skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The fast transit-time limit of magnetic pumping with trapped electrons
Recently, the energization of superthermal electrons at the Earth's bow shock was found to be consistent with a new magnetic pumping model derived in the limit where the electron transit time is much shorter than any time scale governing the evolution of the magnetic fields. The new model breaks with the common approach of integrating the kinetic equations along unperturbed orbits. Rather, the fast transit-time limit allows the electron dynamics to be characterized by adiabatic invariants (action variables) accurately capturing the nonlinear effects of electrons becoming trapped in magnetic perturbations. Without trapping, fast parallel streaming along magnetic field lines causes the electron pressure to be isotropized and homogeneous along the magnetic field lines. In contrast, trapping permits spatially varying pressure anisotropy to form along the magnetic field lines, and through a Fermi process this pressure anisotropy in turn becomes the main ingredient that renders magnetic pumping efficient for energizing superthermal electrons. We here present a detailed mathematical derivation of the model.  more » « less
Award ID(s):
1949802
PAR ID:
10321298
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Plasma Physics
Volume:
87
Issue:
6
ISSN:
0022-3778
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnetic wave perturbations are observed in the solar wind and in the vicinity of Earth's bow shock. For such environments, recent work on magnetic pumping with electrons trapped in the magnetic perturbations has demonstrated the possibility of efficient energization of superthermal electrons. Here we also analyse the energization of such energetic electrons for which the transit time through the system is short compared with time scales associated with the magnetic field evolution. In particular, considering an idealized magnetic configuration we show how trapping/detrapping of energetic magnetized electrons can cause effective parallel velocity ( $$v_{\parallel }$$ -) diffusion. This parallel diffusion, combined with naturally occurring mechanisms known to cause pitch angle scattering, such as whistler waves, produces enhanced heating rates for magnetic pumping. We find that at low pitch angle scattering rates, the combined mechanism enhances the heating beyond the predictions of the recent theory for magnetic pumping with trapped electrons. 
    more » « less
  2. null (Ed.)
    Context. Magnetic reconnection plays a fundamental role in plasma dynamics under many different conditions, from space and astrophysical environments to laboratory devices. High-resolution in situ measurements from space missions allow naturally occurring reconnection processes to be studied in great detail. Alongside direct measurements, numerical simulations play a key role in the investigation of the fundamental physics underlying magnetic reconnection, also providing a testing ground for current models and theory. The choice of an adequate plasma model to be employed in numerical simulations, while also compromising with computational cost, is crucial for efficiently addressing the problem under study. Aims. We consider a new plasma model that includes a refined electron response within the “hybrid-kinetic framework” (fully kinetic protons and fluid electrons). The extent to which this new model can reproduce a full-kinetic description of 2D reconnection, with particular focus on its robustness during the nonlinear stage, is evaluated. Methods. We perform 2D simulations of magnetic reconnection with moderate guide field by means of three different plasma models: (i) a hybrid-Vlasov-Maxwell model with isotropic, isothermal electrons, (ii) a hybrid-Vlasov-Landau-fluid (HVLF) model where an anisotropic electron fluid is equipped with a Landau-fluid closure, and (iii) a full-kinetic model. Results. When compared to the full-kinetic case, the HVLF model effectively reproduces the main features of magnetic reconnection, as well as several aspects of the associated electron microphysics and its feedback onto proton dynamics. This includes the global evolution of magnetic reconnection and the local physics occurring within the so-called electron-diffusion region, as well as the evolution of species’ pressure anisotropy. In particular, anisotropy-driven instabilities (such as fire-hose, mirror, and cyclotron instabilities) play a relevant role in regulating electrons’ anisotropy during the nonlinear stage of magnetic reconnection. As expected, the HVLF model captures all these features, except for the electron-cyclotron instability. 
    more » « less
  3. null (Ed.)
    ABSTRACT We present an interpretation of anisotropy and intensity of supra-thermal ions near a fast quasi-perpendicular reverse shock measured by Solar Terrestrial Relations Observatory Ahead (ST-A) on 2008 March 9. The measured intensity profiles of the supra-thermal particles exhibit an enhancement, or ‘spike’, at the time of the shock arrival and pitch-angle anisotropies before the shock arrival are bi-modal, jointly suggesting trapping of near-scatter-free ions along magnetic field lines that intersect the shock at two locations. We run test-particle simulations with pre-existing upstream magnetostatic fluctuations advected across the shock. The measured bi-modal upstream anisotropy, the nearly field-aligned anisotropies up to ∼15 min upstream of the shock, as well as the ‘pancake-like’ anisotropies up to ∼10 min downstream of the shock are well reproduced by the simulations. These results, in agreement with earlier works, suggest a dominant role of the large-scale structure (100s of supra-thermal proton gyroradii) of the magnetic field in forging the early-on particle acceleration at shocks. 
    more » « less
  4. Abstract We demonstrate using linear theory and particle-in-cell (PIC) simulations that a synchrotron-cooling collisionless plasma acquires pressure anisotropy and, if the plasma beta is sufficiently high, becomes unstable to the firehose instability, in a process that we dub the synchrotron firehose instability (SFHI). The SFHI channels free energy from the pressure anisotropy of the radiating, relativistic electrons (and/or positrons) into small-amplitude, kinetic-scale, magnetic-field fluctuations, which pitch-angle scatter the particles and bring the plasma to a near-thermal state of marginal instability. The PIC simulations reveal a nonlinear cyclic evolution of firehose bursts interspersed by periods of stable cooling. We compare the SFHI for electron–positron and electron–ion plasmas. As a byproduct of the growing electron-firehose magnetic-field fluctuations, magnetized ions gain a pressure anisotropy opposite to that of the electrons. If these ions are relativistically hot, we find that they also experience cooling due to collisionless thermal coupling with the electrons, which we argue is mediated by a secondary ion-cyclotron instability. We suggest that the SFHI may be activated in a number of astrophysical scenarios, such as within ejecta from black hole accretion flows and relativistic jets, where the redistribution of energetic electrons from low to high pitch angles may cause transient bursts of radiation. 
    more » « less
  5. null (Ed.)
    Context. The Parker Solar Probe (PSP) measures solar wind protons and electrons near the Sun. To study the thermodynamic properties of electrons and protons, we include electron effects, such as distributed turbulent heating between protons and electrons, Coulomb collisions between protons and electrons, and heat conduction of electrons. Aims. We develop a general theoretical model of nearly incompressible magnetohydrodynamic (NI MHD) turbulence coupled with a solar wind model that includes electron pressure and heat flux. Methods. It is important to note that 60% of the turbulence energy is assigned to proton heating and 40% to electron heating. We use an empirical expression for the electron heat flux. We derived a nonlinear dissipation term for the residual energy that includes both the Alfvén effect and the turbulent small-scale dynamo effect. Similarly, we obtained the NI/slab time-scale in an NI MHD phenomenology to use in the derivation of the nonlinear term that incorporates the Alfvén effect. Results. A detailed comparison between the theoretical model solutions and the fast solar wind measured by PSP and Helios 2 shows that they are consistent. The results show that the nearly incompressible NI/slab turbulence component describes observations of the fast solar wind periods when the solar wind flow is aligned or antialigned with the magnetic field. 
    more » « less