We investigate electronic structure and dopability of an ultrawide bandgap (UWBG) AlScO3 perovskite, a known high-pressure and long-lived metastable oxide. From first-principles electronic structure calculations, HSE06(+G0W0), we find this material to exhibit an indirect bandgap of around 8.0 eV. Defect calculations point to cation and oxygen vacancies as the dominant intrinsic point defects limiting extrinsic doping. While acceptor behaving Al and Sc vacancies prevent n-type doping, oxygen vacancies permit the Fermi energy to reach ∼0.3 eV above the valence band maximum, rendering AlScO3 p-type dopable. Furthermore, we find that both Mg and Zn could serve as extrinsic p-type dopants. Specifically, Mg is predicted to have achievable net acceptor concentrations of ∼1017 cm−3 with ionization energy of bound small hole polarons of ∼0.49 eV and free ones below 0.1 eV. These values place AlScO3 among the UWBG oxides with lowest bound small hole polaron ionization energies, which, as we find, is likely due to large ionic dielectric constant that correlates well with low hole polaron ionization energies across various UWBG oxides.
Defect chemistry and doping of BiCuSeO
While p-type BiCuSeO is a well-known mid-temperature oxide thermoelectric (TE) material, computations predict that superior TE performance can be realized through n-type doping. In this study, we use first-principles defect calculations to show that Cu vacancies are responsible for the native p-type self doping; yet, we find that BiCuSeO is n-type dopable under Cu-rich growth conditions, where the formation of Cu vacancies is suppressed. We computationally survey a broad suite of 23 dopants and find that only Cl and Br are effective n-type dopants. Therefore, we recommend that future experimental doping efforts utilize phase boundary mapping to optimize the electron concentration and resolve the anomalous p–n–p transitions observed in halogen-doped BiCuSeO. The prospect of n-type doping, as revealed by our defect calculations, paves the path for rational design of BiCuSeO chemical analogues with similar doping behavior and even better TE performance.
more »
« less
- Award ID(s):
- 2102409
- NSF-PAR ID:
- 10321427
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 9
- Issue:
- 36
- ISSN:
- 2050-7488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent, and somewhat surprising, successful n-type doping of Mg 3 Sb 2 was the key to realizing high thermoelectric performance in this material. Herein, we use first-principles defect calculations to investigate different extrinsic n-type doping strategies for Mg 3 Sb 2 and to reveal general chemical trends in terms of dopant solubilities and maximal achievable electron concentrations. In agreement with experiments, we find that Sb substitution is an effective doping strategy, with Se and Te doping predicted to yield up to ∼8 × 10 19 cm −3 electrons. However, we also find that Mg substitution with trivalent (or higher) cations can be even more effective; in particular, the predicted highest achievable electron concentration (∼5 × 10 20 cm −3 ) with La as an extrinsic dopant exceeds that of Se and Te doping. Interstitial doping (Li, Zn, Cu, Be) is found to be largely ineffective either due to self-compensation (Li) or high formation energy (Zn, Cu, Be). Our results offer La as an alternative dopant to Te and Se and reinforce the need for careful phase boundary mapping in achieving high electron concentrations in Mg 3 Sb 2 .more » « less
-
Computations have predicted good thermoelectric performance for a number of Zintl phases when doped n-type. Combined with the successful experimental realization of n-type KGaSb 4 , KAlSb 4 , and Mg 3 Sb 2 with zT ≳ 1, this has fueled efforts to discover novel n-type dopable Zintl phases. However, a majority of Zintl phases exhibit strong proclivity toward p-type doping and prior successes in finding n-type dopable Zintls were largely serendipitous. Herein we use modern first-principles defect calculations to study trends in the dopability of Zintl pnictides and find that the average oxidation state of the anion is a useful chemical guide to identify novel n-type dopable phases. Specifically, we observe that Zintl pnictides with average oxidation of the anion near −1 are n-type dopable. The trend is mainly a consequence of the high formation energy of native acceptor defects ( e.g. cation vacancies) and the resulting absence of charge (electron) compensation. Using the oxidation state guide in conjunction with a descriptor of thermoelectric performance, we conduct a large-scale materials search and identify promising candidates that are n-type dopable.more » « less
-
Binary Co 4 Sb 12 skutterudite (also known as CoSb 3 ) has been extensively studied; however, its mixed-anion counterparts remain largely unexplored in terms of their phase stability and thermoelectric properties. In the search for complex anionic analogs of the binary skutterudite, we begin by investigating the Co 4 Sb 12 –Co 4 Sn 6 Te 6 pseudo-binary phase diagram. We observe no quaternary skutterudite phases and as such, focus our investigations on the ternary Co 4 Sn 6 Te 6 via experimental phase boundary mapping, transport measurements, and first-principles calculations. Phase boundary mapping using traditional bulk syntheses reveals that the Co 4 Sn 6 Te 6 exhibits electronic properties ranging from a degenerate p-type behavior to an intrinsic behavior. Under Sn-rich conditions, Hall measurements indicate degenerate p-type carrier concentrations and high hole mobility. The acceptor defect Sn Te , and donor defects Te Sn and Co i are the predominant defects and rationally correspond to regions of high Sn, Te, and Co, respectively. Consideration of the defect energetics indicates that p-type extrinsic doping is plausible; however, Sn Te is likely a killer defect that limits n-type dopability. We find that the hole carrier concentration in Co 4 Sn 6 Te 6 can be further optimized by extrinsic p-type doping under Sn-rich growth conditions.more » « less
-
Abstract The rational design of the electronic band structures and the associated properties (e.g. optical) of advanced materials has remained challenging for crucial applications in optoelectronics, solar desalination, advanced manufacturing technologies, etc. In this work, using first-principles calculations, we studied the prospects of tuning the absorption spectra of graphene via defect engineering, i.e. chemical doping and oxidation. Our computational analysis shows that graphene functionalization with single hydroxyl and carboxylic acid fails to open a band gap in graphene. While single epoxide functionalization successfully opens a bandgap in graphene and increases absorptivity, however, other optical properties such as reflection, transmission, and dielectric constants are significantly altered. Boron and nitrogen dopants lead to p- and n-type doping, respectively, while fluorine dopants or a single-carbon atomic vacancy cannot create a significant bandgap in graphene. By rigorously considering the spin-polarization effect, we find that titanium, zirconium, and hafnium dopants can create a bandgap in graphene via an induced flat band around the Fermi level as well as the collapse of the Dirac cone. In addition, silicon, germanium, and tin dopants are also effective in improving the optical characteristics. Our work is important for future experimental work on graphene for laser and optical processing applications.more » « less