skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning latent causal graphs via mixture oracles
We study the problem of reconstructing a causal graphical model from data in the presence of latent variables. The main problem of interest is recovering the causal structure over the latent variables while allowing for general, potentially nonlinear dependencies. In many practical problems, the dependence between raw observations (e.g. pixels in an image) is much less relevant than the dependence between certain high-level, latent features (e.g. concepts or objects), and this is the setting of interest. We provide conditions under which both the latent representations and the underlying latent causal model are identifiable by a reduction to a mixture oracle. These results highlight an intriguing connection between the well-studied problem of learning the order of a mixture model and the problem of learning the bipartite structure between observables and unobservables. The proof is constructive, and leads to several algorithms for explicitly reconstructing the full graphical model. We discuss efficient algorithms and provide experiments illustrating the algorithms in practice.  more » « less
Award ID(s):
1955532
PAR ID:
10321437
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems (NeurIPS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of reconstructing a causal graphical model from data in the presence of latent variables. The main problem of interest is recovering the causal structure over the latent variables while allowing for general, potentially nonlinear dependencies. In many practical problems, the dependence between raw observations (e.g. pixels in an image) is much less relevant than the dependence between certain high-level, latent features (e.g. concepts or objects), and this is the setting of interest. We provide conditions under which both the latent representations and the underlying latent causal model are identifiable by a reduction to a mixture oracle. These results highlight an intriguing connection between the well-studied problem of learning the order of a mixture model and the problem of learning the bipartite structure between observables and unobservables. The proof is constructive, and leads to several algorithms for explicitly reconstructing the full graphical model. We discuss efficient algorithms and provide experiments illustrating the algorithms in practice. 
    more » « less
  2. We establish conditions under which latent causal graphs are nonparametrically identifiable and can be reconstructed from unknown interventions in the latent space. Our primary focus is the identification of the latent structure in a measurement model, i.e. causal graphical models where dependence between observed variables is insignificant compared to dependence between latent representations, without making parametric assumptions such as linearity or Gaussianity. Moreover, we do not assume the number of hidden variables is known, and we show that at most one unknown intervention per hidden variable is needed. This extends a recent line of work on learning causal representations from observations and interventions. The proofs are constructive and introduce two new graphical concepts -- imaginary subsets and isolated edges -- that may be useful in their own right. As a matter of independent interest, the proofs also involve a novel characterization of the limits of edge orientations within the equivalence class of DAGs induced by unknown interventions. Experiments confirm that the latent graph can be recovered from data using our theoretical results. These are the first results to characterize the conditions under which causal representations are identifiable without making any parametric assumptions in a general setting with unknown interventions and without faithfulness. 
    more » « less
  3. The standard approach to answering an identifiable causaleffect query (e.g., P(Y |do(X)) given a causal diagram and observational data is to first generate an estimand, or probabilistic expression over the observable variables, which is then evaluated using the observational data. In this paper, we propose an alternative paradigm for answering causal-effect queries over discrete observable variables. We propose to instead learn the causal Bayesian network and its confounding latent variables directly from the observational data. Then, efficient probabilistic graphical model (PGM) algorithms can be applied to the learned model to answer queries. Perhaps surprisingly, we show that this model completion learning approach can be more effective than estimand approaches, particularly for larger models in which the estimand expressions become computationally difficult. We illustrate our method’s potential using a benchmark collection of Bayesian networks and synthetically generated causal models 
    more » « less
  4. Identifying latent variables and causal structures from observational data is essential to many real-world applications involving biological data, medical data, and unstructured data such as images and languages. However, this task can be highly challenging, especially when observed variables are generated by causally related latent variables and the relationships are nonlinear. In this work, we investigate the identification problem for nonlinear latent hierarchical causal models in which observed variables are generated by a set of causally related latent variables, and some latent variables may not have observed children. We show that the identifiability of both causal structure and latent variables can be achieved under mild assumptions: on causal structures, we allow for the existence of multiple paths between any pair of variables in the graph, which relaxes latent tree assumptions in prior work; on structural functions, we do not make parametric assumptions, thus permitting general nonlinearity and multi-dimensional continuous variables. Specifically, we first develop a basic identification criterion in the form of novel identifiability guarantees for an elementary latent variable model. Leveraging this criterion, we show that both causal structures and latent variables of the hierarchical model can be identified asymptotically by explicitly constructing an estimation procedure. To the best of our knowledge, our work is the first to establish identifiability guarantees for both causal structures and latent variables in nonlinear latent hierarchical models. 
    more » « less
  5. This paper considers the latent Gaussian graphical model, which extends the Gaussian graphical model to handle discrete data as well as mixed data with both continuous and discrete variables by assuming that discrete variables are generated by discretizing latent Gaussian variables. We propose a modified expectation‐maximization (EM) algorithm to estimate parameters in the latent Gaussian model for binary data. We also extend the proposed modified EM algorithm to the latent Gaussian model for mixed data. The conditional dependence structure can be consequently constructed by exploring the sparsity pattern of the precision matrix of the latent variables. We illustrate the performance of our proposed estimator through comprehensive numerical studies and an application to voting data of the United Nations General Assembly. 
    more » « less