skip to main content


Title: Structural and functional integrity of decontaminated N95 respirators: Experimental results

With the recent emergence of highly transmissible variants of the novel coronavirus SARS-CoV-2, the demand for N95 respirators is expected to remain high. The extensive use of N95 respirators by the public is susceptible to demand‐supply gaps and raises concern about their disposal, threatening the environment with a new kind of plastic pollution. Herein, we investigated the filtration performance of the N95 respirator by specifically analyzing the structure in the key filtration layers of meltblown nonwoven after decontamination with one and five cycles of liquid hydrogen peroxide, ultraviolet radiation, moist heat, and aqueous soap solution treatments. With the aid of X-ray microcomputed tomography (microCT) analysis, the local structural heterogeneity of the meltblown nonwoven has been unfolded and subsequently correlated with their filtration performance at a face velocity that matched with speaking conditions (∼3.89 m/s). The filtration efficiency results of the N95 respirator remain unaltered after performing one cycle of treatment modalities (except autoclave).

 
more » « less
Award ID(s):
1944942
NSF-PAR ID:
10374884
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Journal of Industrial Textiles
Volume:
51
Issue:
5_suppl
ISSN:
1528-0837
Page Range / eLocation ID:
p. 7999S-8017S
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Filtering facepiece respirators (FFRs) provide effective protection against diseases spread through airborne infectious droplets and particles. The widespread use of FFRs during the COVID-19 pandemic has not only led to supply shortages, but the disposal of single-use facemasks also threatens the environment with a new kind of plastic pollution. While limited reuse of filtering facepiece respirators has been permitted as a crisis capacity strategy, there are currently no standard test methods available for decontamination before their repeated use. The decontamination of respirators can compromise the structural and functional integrity by reducing the filtration efficiency and breathability. Digital segmentation of X-ray microcomputed tomography (microCT) scans of the meltblown nonwoven layers of a specific N95 respirator model (Venus-4400) after treatment with one and five cycles of liquid hydrogen peroxide, ultraviolet radiation, moist heat, and aqueous soap solution enabled us to perform filtration simulations of decontaminated respirators. The computed filtration efficiencies for 0.3 µm particles agreed well with experimental measurements, and the distribution of particle penetration depths was correlated with the structural changes resulting from decontamination. The combination of X-ray microCT imaging with numerical simulations thus provides a strategy for quantitative evaluation of the effectiveness of decontamination treatments for a specific respirator model. 
    more » « less
  2. Abstract

    During the global spread of COVID‐19, high demand and limited availability of melt‐blown filtration material led to a manufacturing backlog of N95 Filtering Facepiece Respirators (FFRs). This shortfall prompted the search for alternative filter materials that could be quickly mass produced while meeting N95 FFR filtration and breathability performance standards. Here, an unsupported, nonwoven layer of uncharged polystyrene (PS) microfibers was produced via electrospinning that achieves N95 performance standards based on physical parameters (e.g., filter thickness) alone. PS microfibers 3–6 μm in diameter and deposited in an ~5 mm thick filter layer are favorable for use in FFRs, achieving high filtration efficiencies (≥97.5%) and low pressure drops (≤15 mm H2O). The PS microfiber filter demonstrates durability upon disinfection with hydroxyl radicals (•OH), maintaining high filtration efficiencies and low pressure drops over six rounds of disinfection. Additionally, the PS microfibers exhibit antibacterial activity (1‐log removal ofE. coli) and can be modified readily through integration of silver nanoparticles (AgNPs) during electrospinning to enhance their activity (≥3‐log removal at 25 wt% AgNP integration). Because of their tunable performance, potential reusability with disinfection, and antimicrobial properties, these electrospun PS microfibers may represent a suitable, alternative filter material for use in N95 FFRs.

     
    more » « less
  3. Abstract

    The emergence of the SARS‐CoV‐2 pandemic and airborne particulate matter (PM) pollution has led to remarkably high demand for face masks. However, conventional respirators are intended for single use and made from nondegradable materials, causing serious concern for a plastic‐waste environmental crisis. Furthermore, these facemasks are weakened in humid conditions and difficult to decontaminate. Herein, a reusable, self‐sustaining, highly effective, and humidity‐resistant air filtration membrane with excellent particle‐removal efficiency is reported, based on highly controllable and stable piezoelectric electrospun poly (l‐lactic acid) (PLLA) nanofibers. The PLLA filter possesses a high filtration efficiency (>99% for PM 2.5 and>91% for PM 1.0) while providing a favorable pressure drop (91 Pa at normal breathing rate) for human breathing due to the piezoelectric charge naturally activated by respiration through the mask. The filter has a long, stable filtration performance and good humidity resistance, demonstrated by a minimal declination in the filtration performance of the nanofiber membrane after moisture exposure. The PLLA filter is reusable via common sterilization tools (i.e., an ultrasonic cleaning bath, autoclave, or microwave). Moreover, a prototype of a completely biodegradable PLLA nanofiber‐based facemask is fabricated and shown to decompose within 5 weeks in an accelerated degradation environment.

     
    more » « less
  4. null (Ed.)
    With the increased bacteria-induced hospital-acquired infections (HAIs) caused by bio-contaminated surfaces, the requirement for a safer and more efficient antibacterial strategy in designing personal protective equipment (PPE) such as N95 respirators is rising with urgency. Herein, a self-decontaminating nanofibrous filter with a high particulate matter (PM) filtration efficiency was designed and fabricated via a facile electrospinning method. The fillers implemented in the electrospun nanofibers were constructed by grafting a layer of antibacterial polymeric quaternary ammonium compound (QAC), that is, poly[2-(dimethyl decyl ammonium) ethyl methacrylate] (PQDMAEMA), onto the surface of metal–organic framework (MOF, UiO-66-NH 2 as a model) to form the active composite UiO-PQDMAEMA. The UiO-PQDMAEMA filter demonstrates an excellent PM filtration efficiency (>95%) at the most penetrating particle size (MPPS) of 80 nm, which is comparable to that of the commercial N95 respirators. Besides, the UiO-PQDMAEMA filter is capable of efficiently killing both Gram-positive ( S. epidermidis ) and Gram-negative ( E. coli ) airborne bacteria. The strong electrostatic interactions between the anionic cell wall of the bacteria and positively charged nitrogen of UiO-PQDMAEMA are the main reasons for severe cell membrane disruption, which leads to the death of bacteria. The present work provides a new avenue for combating air contamination by using the QAC-modified MOF-based active filters. 
    more » « less
  5. Novel cloth face masks to mitigate the spread of COVID-19 have been developed and tested for particle (0.1 μm in size) filtration efficiency, bacterial filtration efficiency, breathability, leakage, heart rate, and blood oxygen level, and then compared with the available N95 masks and surgical masks. It was found that this novel mask had better filtration efficiency than that of surgical masks and was very close to that of N95 masks. The breathability was also improved and was in the range of the designated levels for barrier face coverings. The flow visualization technique was utilized to study the leakage of the mask and it was found to have significantly lower leakage as compared to surgical masks. Heart rate and blood oxygen level tests were performed by wearing the mask during 10-minute walking sessions and it was found that wearing the mask did not adversely affect heart rate or blood oxygen levels or add any other strain on the wearer. It is believed that this novel face mask would reduce the spread of COVID-19 as well as provide an environmentally and economically conscious alternative to the N95 respirators for the public. The mask developed in this study can be washed, reused, and therefore worn for longer periods of time. 
    more » « less