skip to main content


Title: A High-Quality Reference Genome Assembly of the Saltwater Crocodile, Crocodylus porosus, Reveals Patterns of Selection in Crocodylidae
Abstract Crocodilians are an economically, culturally, and biologically important group. To improve researchers’ ability to study genome structure, evolution, and gene regulation in the clade, we generated a high-quality de novo genome assembly of the saltwater crocodile, Crocodylus porosus, from Illumina short read data from genomic libraries and in vitro proximity-ligation libraries. The assembled genome is 2,123.5 Mb, with N50 scaffold size of 17.7 Mb and N90 scaffold size of 3.8 Mb. We then annotated this new assembly, increasing the number of annotated genes by 74%. In total, 96% of 23,242 annotated genes were associated with a functional protein domain. Furthermore, multiple noncoding functional regions and mappable genetic markers were identified. Upon analysis and overlapping the results of branch length estimation and site selection tests for detecting potential selection, we found 16 putative genes under positive selection in crocodilians, 10 in C. porosus and 6 in Alligator mississippiensis. The annotated C. porosus genome will serve as an important platform for osmoregulatory, physiological, and sex determination studies, as well as an important reference in investigating the phylogenetic relationships of crocodilians, birds, and other tetrapods.  more » « less
Award ID(s):
1838283
NSF-PAR ID:
10321668
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Editor(s):
Cordaux, Richard
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
12
Issue:
1
ISSN:
1759-6653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background The tobacco thrips ( Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips ( Thrips palmi Karny) and the western flower thrips ( Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. Results A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis . Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species’ genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis . Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella , but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. Conclusions The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status. 
    more » « less
  2. Abstract Comparisons of high-quality, reference butterfly, and moth genomes have been instrumental to advancing our understanding of how hybridization, and natural selection drive genomic change during the origin of new species and novel traits. Here, we present a genome assembly of the Southern Dogface butterfly, Zerene cesonia (Pieridae) whose brilliant wing colorations have been implicated in developmental plasticity, hybridization, sexual selection, and speciation. We assembled 266,407,278 bp of the Z. cesonia genome, which accounts for 98.3% of the estimated 271 Mb genome size. Using a hybrid approach involving Chicago libraries with Hi-Rise assembly and a diploid Meraculous assembly, the final haploid genome was assembled. In the final assembly, nearly all autosomes and the Z chromosome were assembled into single scaffolds. The largest 29 scaffolds accounted for 91.4% of the genome assembly, with the remaining ∼8% distributed among another 247 scaffolds and overall N50 of 9.2 Mb. Tissue-specific RNA-seq informed annotations identified 16,442 protein-coding genes, which included 93.2% of the arthropod Benchmarking Universal Single-Copy Orthologs (BUSCO). The Z. cesonia genome assembly had ∼9% identified as repetitive elements, with a transposable element landscape rich in helitrons. Similar to other Lepidoptera genomes, Z. cesonia showed a high conservation of chromosomal synteny. The Z. cesonia assembly provides a high-quality reference for studies of chromosomal arrangements in the Pierid family, as well as for population, phylo, and functional genomic studies of adaptation and speciation. 
    more » « less
  3. The Mozambique tilapia ( Oreochromis mossambicus ) is a fascinating taxon for evolutionary and ecological research. It is an important food fish and one of the most widely distributed tilapias. Because males grow faster than females, genetically male tilapia are preferred in aquaculture. However, studies of sex determination and sex control in O . mossambicus have been hindered by the limited characterization of the genome. To address this gap, we assembled a high-quality genome of O . mossambicus , using a combination of high coverage of Illumina and Nanopore reads, coupled with Hi-C and RNA-Seq data. Our genome assembly spans 1,007 Mb with a scaffold N50 of 11.38 Mb. We successfully anchored and oriented 98.6% of the genome on 22 linkage groups (LGs). Based on re-sequencing data for male and female fishes from three families, O . mossambicus segregates both an XY system on LG14 and a ZW system on LG3. The sex-patterned SNPs shared by two XY families narrowed the sex determining regions to ∼3 Mb on LG14. The shared sex-patterned SNPs included two deleterious missense mutations in ahnak and rhbdd1 , indicating the possible roles of these two genes in sex determination. This annotated chromosome-level genome assembly and identification of sex determining regions represents a valuable resource to help understand the evolution of genetic sex determination in tilapias. 
    more » « less
  4. Abstract

    Symbiotic relationships between vestimentiferan tubeworms and chemosynthetic Gammaproteobacteria build the foundations of many hydrothermal vent and hydrocarbon seep ecosystems in the deep sea. The association between the vent tubewormRiftia pachyptilaand its endosymbiontCandidatusEndoriftia persephone has become a model system for symbiosis research in deep‐sea vestimentiferans, while markedly fewer studies have investigated symbiotic relationships in other tubeworm species, especially at cold seeps. Here we sequenced the endosymbiont genome of the tubewormLamellibrachia barhamifrom a cold seep in the Gulf of California, using short‐ and long‐read sequencing technologies in combination with Hi‐C and Dovetail Chicago libraries. Our final assembly had a size of ~4.17 MB, a GC content of 54.54%, 137X coverage, 4153 coding sequences, and aCheckMcompleteness score of 97.19%. A single scaffold contained 99.51% of the genome. Comparative genomic analyses indicated that theL. barhamisymbiont shares a set of core genes and many metabolic pathways with other vestimentiferan symbionts, while containing 433 unique gene clusters that comprised a variety of transposases, defence‐related genes and a lineage‐specific CRISPR/Cas3 system. This assembly represents the most contiguous tubeworm symbiont genome resource to date and will be particularly valuable for future comparative genomic studies investigating structural genome evolution, physiological adaptations and host‐symbiont communication in chemosynthetic animal‐microbe symbioses.

     
    more » « less
  5. null (Ed.)
    Abstract Background The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. Results We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. Conclusions Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species. 
    more » « less