skip to main content

Title: Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that impedes patients’ cognition, social, speech and communication skills. ASD is highly heterogeneous with a variety of etiologies and clinical manifestations. The prevalence rate of ASD increased steadily in recent years. Presently, molecular mechanisms underlying ASD occurrence and development remain to be elucidated. Here, we integrated multi-layer genomics data to investigate the transcriptome and pathway dysregulations in ASD development. The RNA sequencing (RNA-seq) expression profiles of induced pluripotent stem cells (iPSCs), neural progenitor cells (NPCs) and neuron cells from ASD and normal samples were compared in our study. We found that substantially more genes were differentially expressed in the NPCs than the iPSCs. Consistently, gene set variation analysis revealed that the activity of the known ASD pathways in NPCs and neural cells were significantly different from the iPSCs, suggesting that ASD occurred at the early stage of neural system development. We further constructed comprehensive brain- and neural-specific regulatory networks by incorporating transcription factor (TF) and gene interactions with long 5 non-coding RNA(lncRNA) and protein interactions. We then overlaid the transcriptomes of different cell types on the regulatory networks to infer the regulatory cascades. The variations of the regulatory cascades between ASD and more » normal samples uncovered a set of novel disease-associated genes and gene interactions, particularly highlighting the functional roles of ELF3 and the interaction between STAT1 and lncRNA ELF3-AS 1 in the disease development. These new findings extend our understanding of ASD and offer putative new therapeutic targets for further studies. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Rationale: NAA15 (N-alpha-acetyltransferase 15) is a component of the NatA (N-terminal acetyltransferase complex). The mechanism by which NAA15 haploinsufficiency causes congenital heart disease remains unknown. To better understand molecular processes by which NAA15 haploinsufficiency perturbs cardiac development, we introduced NAA15 variants into human induced pluripotent stem cells (iPSCs) and assessed the consequences of these mutations on RNA and protein expression. Objective: We aim to understand the role of NAA15 haploinsufficiency in cardiac development by investigating proteomic effects on NatA complex activity and identifying proteins dependent upon a full amount of NAA15. Methods and Results: We introduced heterozygous loss of function, compound heterozygous, and missense residues (R276W) in iPSCs using CRISPR/Cas9. Haploinsufficient NAA15 iPSCs differentiate into cardiomyocytes, unlike NAA15 -null iPSCs, presumably due to altered composition of NatA. Mass spectrometry analyses reveal ≈80% of identified iPSC NatA targeted proteins displayed partial or complete N-terminal acetylation. Between null and haploinsufficient NAA15 cells, N-terminal acetylation levels of 32 and 9 NatA-specific targeted proteins were reduced, respectively. Similar acetylation loss in few proteins occurred in NAA15 R276W induced pluripotent stem cells. In addition, steady-state protein levels of 562 proteins were altered in both null and haploinsufficient NAA15 cells; 18 were ribosomal-associated proteins. At leastmore »4 proteins were encoded by genes known to cause autosomal dominant congenital heart disease. Conclusions: These studies define a set of human proteins that requires a full NAA15 complement for normal synthesis and development. A 50% reduction in the amount of NAA15 alters levels of at least 562 proteins and N-terminal acetylation of only 9 proteins. One or more modulated proteins are likely responsible for NAA15-haploinsufficiency mediated congenital heart disease. Additionally, genetically engineered induced pluripotent stem cells provide a platform for evaluating the consequences of amino acid sequence variants of unknown significance on NAA15 function.« less
  2. Abstract Background Mutations in LMNA , encoding lamin A/C, lead to a variety of diseases known as laminopathies including dilated cardiomyopathy (DCM) and skeletal abnormalities. Though previous studies have investigated the dysregulation of gene expression in cells from patients with DCM, the role of epigenetic (gene regulatory) mechanisms, such as DNA methylation, has not been thoroughly investigated. Furthermore, the impact of family-specific LMNA mutations on DNA methylation is unknown. Here, we performed reduced representation bisulfite sequencing on ten pairs of fibroblasts and their induced pluripotent stem cell (iPSC) derivatives from two families with DCM due to distinct LMNA mutations, one of which also induces brachydactyly. Results Family-specific differentially methylated regions (DMRs) were identified by comparing the DNA methylation landscape of patient and control samples. Fibroblast DMRs were found to enrich for distal regulatory features and transcriptionally repressed chromatin and to associate with genes related to phenotypes found in tissues affected by laminopathies. These DMRs, in combination with transcriptome-wide expression data and lamina-associated domain (LAD) organization, revealed the presence of inter-family epimutation hotspots near differentially expressed genes, most of which were located outside LADs redistributed in LMNA -related DCM. Comparison of DMRs found in fibroblasts and iPSCs identified regions where epimutationsmore »were persistent across both cell types. Finally, a network of aberrantly methylated disease-associated genes revealed a potential molecular link between pathways involved in bone and heart development. Conclusions Our results identified both shared and mutation-specific laminopathy epimutation landscapes that were consistent with lamin A/C mutation-mediated epigenetic aberrancies that arose in somatic and early developmental cell stages.« less
  3. The human brain utilizes ~ 20% of all of the body’s metabolic resources, while chimpanzee brains use less than 10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell-type specific interspecies differences in brain gene expression, we conducted RNA-Seq on neural progenitor cells (NPCs), neurons, and astrocytes generated from induced pluripotent stem cells (iPSCs) from humans and chimpanzees. Interspecies differential expression (DE) analyses revealed that twice as many genes exhibit DE in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans.
  4. Abstract Hypertrophic cardiomyopathy (HCM) is considered a primary disorder of the sarcomere resulting in unexplained left ventricular hypertrophy but the paradoxical association of nonmyocyte phenotypes such as fibrosis, mitral valve anomalies and microvascular occlusion is unexplained. To understand the interplay between cardiomyocyte and nonmyocyte cell types in human HCM, single nuclei RNA-sequencing was performed on myectomy specimens from HCM patients with left ventricular outflow tract obstruction and control samples from donor hearts free of cardiovascular disease. Clustering analysis based on gene expression patterns identified a total of 34 distinct cell populations, which were classified into 10 different cell types based on marker gene expression. Differential gene expression analysis comparing HCM to Normal datasets revealed differences in sarcomere and extracellular matrix gene expression. Analysis of expressed ligand-receptor pairs across multiple cell types indicated profound alteration in HCM intercellular communication, particularly between cardiomyocytes and fibroblasts, fibroblasts and lymphocytes and involving integrin β1 and its multiple extracellular matrix (ECM) cognate ligands. These findings provide a paradigm for how sarcomere dysfunction is associated with reduced cardiomyocyte secretion of ECM ligands, altered fibroblast ligand-receptor interactions with other cell types and increased fibroblast to lymphocyte signaling, which can further alter the ECM composition and promote nonmyocytemore »phenotypes.« less
  5. ABSTRACT Long noncoding RNA (lncRNA) plays important roles in sexual development in eukaryotes. In filamentous fungi, however, little is known about the expression and roles of lncRNAs during fruiting body formation. By profiling developmental transcriptomes during the life cycle of the plant-pathogenic fungus Fusarium graminearum , we identified 547 lncRNAs whose expression was highly dynamic, with about 40% peaking at the meiotic stage. Many lncRNAs were found to be antisense to mRNAs, forming 300 sense-antisense pairs. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. Genome-wide analysis of small RNA clusters identified many silenced loci at the meiotic stage. However, we found transcriptionally active small RNA clusters, many of which were associated with lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were induced in parallel as the fruiting bodies matured. The nonsense-mediated decay (NMD) pathway is known to determine the fates of lncRNAs as well as mRNAs. Thus, we analyzed mutants defective in NMD and identified a subset of lncRNAs that were induced during sexual development but suppressed by NMD during vegetative growth. These results highlight the developmental stage-specific nature and functional potential ofmore »lncRNA expression in shaping the fungal fruiting bodies and provide fundamental resources for studying sexual stage-induced lncRNAs. IMPORTANCE Fusarium graminearum is the causal agent of the head blight on our major staple crops, wheat and corn. The fruiting body formation on the host plants is indispensable for the disease cycle and epidemics. Long noncoding RNA (lncRNA) molecules are emerging as key regulatory components for sexual development in animals and plants. To date, however, there is a paucity of information on the roles of lncRNAs in fungal fruiting body formation. Here we characterized hundreds of lncRNAs that exhibited developmental stage-specific expression patterns during fruiting body formation. Also, we discovered that many lncRNAs were induced in parallel with their overlapping transcripts on the opposite DNA strand during sexual development. Finally, we found a subset of lncRNAs that were regulated by an RNA surveillance system during vegetative growth. This research provides fundamental genomic resources that will spur further investigations on lncRNAs that may play important roles in shaping fungal fruiting bodies.« less