skip to main content

Title: The Final Fates of Close Hot Subdwarf–White Dwarf Binaries: Mergers Involving He/C/O White Dwarfs and the Formation of Unusual Giant Stars with C/O-Dominated Envelopes
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We seek signatures of the current experimental 12 C α , γ 16 O reaction rate probability distribution function in the pulsation periods of carbon–oxygen white dwarf (WD) models. We find that adiabatic g-modes trapped by the interior carbon-rich layer offer potentially useful signatures of this reaction rate probability distribution function. Probing the carbon-rich region is relevant because it forms during the evolution of low-mass stars under radiative helium-burning conditions, mitigating the impact of convective mixing processes. We make direct quantitative connections between the pulsation periods of the identified trapped g-modes in variable WD models and the current experimental 12 C α , γ 16 O reaction rate probability distribution function. We find an average spread in relative period shifts of Δ P / P ≃ ±2% for the identified trapped g-modes over the ±3 σ uncertainty in the 12 C α , γ 16 O reaction rate probability distribution function—across the effective temperature range of observed DAV and DBV WDs and for different WD masses, helium shell masses, and hydrogen shell masses. The g-mode pulsation periods of observed WDs are typically given to six to seven significant figures of precision. This suggests that an astrophysical constraint on themore »12 C α , γ 16 O reaction rate could, in principle, be extractable from the period spectrum of observed variable WDs.« less
  2. The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions.
  3. The direct nucleophilic addition to amides represents an attractive methodology in organic synthesis that tackles amidic resonance by ground-state destabilization. This approach has been recently accomplished with carbon, nitrogen and oxygen nucleophiles. Herein, we report an exceedingly mild method for the direct thioesterification and selenoesterification of amides by selective N–C(O) bond cleavage in the absence of transition metals. Acyclic amides undergo N–C(O) to S/Se–C(O) interconversion to give the corresponding thioesters and selenoesters in excellent yields at room temperature via a tetrahedral intermediate pathway (cf. an acyl metal).
  4. Controlled energy transfer has been found to be one of the most effective ways of designing tunable and white photoluminescent phosphors. Utilizing host emission to achieve the same would lead to a new dimension in the design strategy for novel luminescent materials in solid state lighting and display devices. In this work, we have achieved controlled energy transfer by suppressing the host to dopant energy transfer in La 2 Hf 2 O 7 :Eu 3+ nanoparticles (NPs) by co-doping with uranium ions. Uranium acts as a barrier between the oxygen vacancies of the La 2 Hf 2 O 7 host and Eu 3+ doping ions to increase their separation and reduce the non-radiative energy transfer between them. Density functional theory (DFT) calculations of defect formation energy showed that the Eu 3+ dopant occupies the La 3+ site and the uranium ion occupies the Hf 4+ site. Co-doping the La 2 Hf 2 O 7 :Eu 3+ NPs with uranium ions creates negatively charged lanthanum and hafnium vacancies making the system highly electron rich. Formation of cation vacancies is expected to compensate the excess charge in the U and Eu co-doped La 2 Hf 2 O 7 NPs suppressing the formationmore »of oxygen vacancies. This work shows how one can utilize the full color gamut in the La 2 Hf 2 O 7 :Eu 3+ ,U 6+ NPs with blue, green and red emissions from the host, uranium and europium, respectively, to produce near perfect white light emission.« less