Arctic shorelines are vulnerable to climate change impacts as sea level rises, permafrost thaws, storms intensify, and sea ice thins. Seventy-five years of aerial and satellite observations have established coastal erosion as an increasing Arctic hazard. However, other hazards at play—for instance, the cumulative impact that sea-level rise and permafrost thaw subsidence will have on permafrost shorelines—have received less attention, preventing assessments of these processes’ impacts compared to and combined with coastal erosion. Alaska’s Arctic Coastal Plain (ACP) is ideal for such assessments because of the high-density observations of topography, coastal retreat rates, and permafrost characteristics, and importance to Indigenous communities and oilfield infrastructure. Here, we produce 21st-century projections of Arctic shoreline position that include erosion, permafrost subsidence, and sea-level rise. Focusing on the ACP, we merge 5 m topography, satellite-derived coastal lake depth estimates, and empirical assessments of land subsidence due to permafrost thaw with projections of coastal erosion and sea-level rise for medium and high emissions scenarios from the Intergovernmental Panel on Climate Change’s AR6 Report. We find that by 2100, erosion and inundation will together transform the ACP, leading to 6-8x more land loss than coastal erosion alone and disturbing 8-11x more organic carbon. Without mitigating measures, by 2100, coastal change could damage 40 to 65% of infrastructure in present-day ACP coastal villages and 10 to 20% of oilfield infrastructure. Our findings highlight the risks that compounding climate hazards pose to coastal communities and underscore the need for adaptive planning for Arctic coastlines in the 21st century.
more »
« less
Sea-level rise and warming mediate coastal groundwater discharge in the Arctic
Abstract Groundwater discharge is an important mechanism through which fresh water and associated solutes are delivered to the ocean. Permafrost environments have traditionally been considered hydrogeologically inactive, yet with accelerated climate change and permafrost thaw, groundwater flow paths are activating and opening subsurface connections to the coastal zone. While warming has the potential to increase land-sea connectivity, sea-level change has the potential to alter land-sea hydraulic gradients and enhance coastal permafrost thaw, resulting in a complex interplay that will govern future groundwater discharge dynamics along Arctic coastlines. Here, we use a recently developed permafrost hydrological model that simulates variable-density groundwater flow and salinity-dependent freeze-thaw to investigate the impacts of sea-level change and land and ocean warming on the magnitude, spatial distribution, and salinity of coastal groundwater discharge. Results project both an increase and decrease in discharge with climate change depending on the rate of warming and sea-level change. Under high warming and low sea-level rise scenarios, results show up to a 58% increase in coastal groundwater discharge by 2100 due to the formation of a supra-permafrost aquifer that enhances freshwater delivery to the coastal zone. With higher rates of sea-level rise, the increase in discharge due to warming is reduced to 21% as sea-level rise decreased land-sea hydraulic gradients. Under lower warming scenarios for which supra-permafrost groundwater flow was not established, discharge decreased by up to 26% between 1980 and 2100 for high sea-level rise scenarios and increased only 8% under low sea-level rise scenarios. Thus, regions with higher warming rates and lower rates of sea-level change (e.g. northern Nunavut, Canada) will experience a greater increase in discharge than regions with lower warming rates and higher rates of sea-level change. The magnitude, location and salinity of discharge have important implications for ecosystem function, water quality, and carbon dynamics in coastal zones.
more »
« less
- Award ID(s):
- 1952627
- PAR ID:
- 10321954
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 17
- Issue:
- 4
- ISSN:
- 1748-9326
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Anthropogenic warming in the Arctic is causing hydrological cycle intensification and permafrost thaw, with implications for flows of water, carbon, and energy from terrestrial biomes to coastal zones. To better understand the likely impacts of these changes, we used a hydrology model driven by meteorological data from atmospheric reanalysis and two global climate models for the period 1980–2100. The hydrology model accounts for soil freeze–thaw processes and was applied across the pan-Arctic drainage basin. The simulations point to greater changes over northernmost areas of the basin underlain by permafrost and to the western Arctic. An acceleration of simulated river discharge over the recent past is commensurate with trends drawn from observations and reported in other studies. Between early-century (2000–2019) and late-century (2080–2099) periods, the model simulations indicate an increase in annual total runoff of 17 %–25 %, while the proportion of runoff emanating from subsurface pathways is projected to increase by 13 %–30 %, with the largest changes noted in summer and autumn and across areas with permafrost. Most notably, runoff contributions to river discharge shift to northern parts of the Arctic Basin that contain greater amounts of soil carbon. Each season sees an increase in subsurface runoff; spring is the only season where surface runoff dominates the rise in total runoff, and summer experiences a decline in total runoff despite an increase in the subsurface component. The greater changes that are seen in areas where permafrost exists support the notion that increased soil thaw is shifting hydrological contributions to more subsurface flow. The manifestations of warming, hydrological cycle intensification, and permafrost thaw will impact Arctic terrestrial and coastal environments through altered river flows and the materials they transport.more » « less
-
Supra-permafrost submarine groundwater discharge (SGD) in the Arctic is poorly understood, yet has the potential to increase over the coming decades due to climate change. This study uses radium (Ra) isotopes to investigate this process by constraining seasonal SGD inputs to an Arctic coastal lagoon (Simpson Lagoon, AK). Within this dataset are 224Ra, 223Ra, 228Ra, and 226Ra activities for surface water samples (lagoon, rivers) and groundwater samples across three seasons: thaw (June 2022), open water (August 2021 and July 2022), and freeze up (September/October 2022). Experimentally determined valued for Ra desorption from riverine suspended sediments and diffusive fluxes from bottom sediments are also included.more » « less
-
Abstract The thawing of permafrost in the Arctic has led to an increase in coastal land loss, flooding, and ground subsidence, seriously threatening civil infrastructure and coastal communities. However, a lack of tools for synthetic hazard assessment of the Arctic coast has hindered effective response measures. We developed a holistic framework, the Arctic Coastal Hazard Index (ACHI), to assess the vulnerability of Arctic coasts to permafrost thawing, coastal erosion, and coastal flooding. We quantified the coastal permafrost thaw potential (PTP) through regional assessment of thaw subsidence using ground settlement index. The calculations of the ground settlement index involve utilizing projections of permafrost conditions, including future regional mean annual ground temperature, active layer thickness, and talik thickness. The predicted thaw subsidence was validated through a comparison with observed long-term subsidence data. The ACHI incorporates the PTP into seven physical and ecological variables for coastal hazard assessment: shoreline type, habitat, relief, wind exposure, wave exposure, surge potential, and sea-level rise. The coastal hazard assessment was conducted for each 1 km2coastline of North Slope Borough, Alaska in the 2060s under the Representative Concentration Pathway 4.5 and 8.5 forcing scenarios. The areas that are prone to coastal hazards were identified by mapping the distribution pattern of the ACHI. The calculated coastal hazards potential was subjected to validation by comparing it with the observed and historical long-term coastal erosion mean rates. This framework for Arctic coastal assessment may assist policy and decision-making for adaptation, mitigation strategies, and civil infrastructure planning.more » « less
-
Coastal environments around the globe are subject to anthropogenic stresses due to dense coastal populations. The response of development activities on dynamic estuarine ecosystems, influenced by tidal forces, freshwater flows, salinity variations, and intricate coastal land morphology, is often uncertain. This case study evaluates how connectivity and coastal geomorphology influence flow patterns by modeling the effects of a proposed hydraulic reconnection project on water movement between the Manchester Waterway, a coastal residential community, and Charlotte Harbor, a large open water estuary in the Gulf of Mexico. An unstructured grid, 2D model was developed utilizing Delft3D Flexible Mesh to simulate estuary hydrodynamics under proposed conditions for four different weather conditions, including recorded 2021–2022 weather, future sea level rise, an extreme weather event, and a combination of extreme weather and sea level rise. Simulated flow results for proposed conditions were compared to present day flow patterns for analysis of the predicted changes in water levels and velocity magnitudes in the waterway. The results show that increased connectivity between the Manchester Waterway and Charlotte Harbor is expected to increase tidal amplitudes largely due to a lowering of minimum water levels in the waterway. During storm events, water elevations are predicted to drop to lower elevations following peak storm surge due to proposed conditions, which may provide flooding relief. Model simulation results will aid hydraulic reconnection and guide a more comprehensive ecological restoration plan. This case study will also improve understanding of the major influencing forces in intricate estuarine environments and how ecosystems may respond to land development, sea level rise, and increasing magnitude and frequency of tropical storms.more » « less
An official website of the United States government

