skip to main content


Title: Electronic structures and spectroscopic signatures of diiron intermediates generated by O 2 activation of nonheme iron( ii )–thiolate complexes
The activation of O 2 at thiolate–ligated iron( ii ) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron–thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O 2 to catalyze tandem S–C bond formation and S -oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron–thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA ( Dalton Trans. 2020, 49 , 17745–17757). These models feature monodentate thiolate ligands and tripodal N 4 ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O 2 at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron( iii ) dimers with a bridging oxo ligand derived from the four-electron reduction of O 2 . Structural models of 3 and 4 consistent with the experimental data were generated via density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron( iii )-μ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron( iii )-μ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O 2 reaction landscapes of iron–thiolate species in both biological and synthetic environments.  more » « less
Award ID(s):
1828649
NSF-PAR ID:
10322081
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
50
Issue:
40
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biological N2reduction occurs at sulfur‐rich multiiron sites, and an interesting potential pathway is concerted double reduction/ protonation of bridging N2through PCET. Here, we test the feasibility of using synthetic sulfur‐supported diiron complexes to mimic this pathway. Oxidative proton transfer from μ‐η1 : η1‐diazene (HN=NH) is the microscopic reverse of the proposed N2fixation pathway, revealing the energetics of the process. Previously, Sellmann assigned the purple metastable product from two‐electron oxidation of [{Fe2+(PPr3)L1}2(μ‐η1 : η1‐N2H2)] (L1=tetradentate SSSS ligand) at −78 °C as [{Fe2+(PPr3)L1}2(μ‐η1 : η1‐N2)]2+, which would come from double PCET from diazene to sulfur atoms of the supporting ligands. Using resonance Raman, Mössbauer, NMR, and EPR spectroscopies in conjunction with DFT calculations, we show that the product is not an N2complex. Instead, the data are most consistent with the spectroscopically observed species being the mononuclear iron(III) diazene complex [{Fe(PPr3)L1}(η2‐N2H2)]+. Calculations indicate that the proposed double PCET has a barrier that is too high for proton transfer at the reaction temperature. Also, PCET from the bridging diazene is highly exergonic as a result of the high Fe3+/2+redox potential, indicating that the reverse N2protonation would be too endergonic to proceed. This system establishes the “ground rules” for designing reversible N2/N2H2interconversion through PCET, such as tuning the redox potentials of the metal sites.

     
    more » « less
  2. null (Ed.)
    One-pot reaction of tris(2-aminoethyl)amine (TREN), [Cu I (MeCN) 4 ]PF 6 , and paraformaldehyde affords a mixed-valent [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu 3 (μ 3 -OH)] 3+ core. The fourth TREN caps on top of the tricopper cluster to form a cryptand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 and its solvent-exposed analog [ TREN3 Cu II Cu II Cu II (μ 3 -O)](PF 6 ) 4 suggest that isolation of tricopper core in a cryptand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [ TREN4 Cu I Cu I Cu I (μ 3 -OH)](PF 6 ) 2 can reduce O 2 under acidic conditions. The geometric constraints provided by the cryptand are reminiscent of Nature's multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at Cu I Cu I Cu I ( 4a ), Cu II Cu I Cu I ( 4b ), and Cu II Cu II Cu I ( 4c ) states, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (10 5 to 10 6 M −1 s −1 ) were observed for both Cu I Cu I Cu I /Cu II Cu I Cu I and Cu II Cu I Cu I /Cu II Cu II Cu I redox couples, approaching the rapid electron transfer rates of copper sites in MCO. 
    more » « less
  3. Abstract

    Nonheme iron enzymes generate powerful and versatile oxidants that perform a wide range of oxidation reactions, including the functionalization of inert C−H bonds, which is a major challenge for chemists. The oxidative abilities of these enzymes have inspired bioinorganic chemists to design synthetic models to mimic their ability to perform some of the most difficult oxidation reactions and study the mechanisms of such transformations. Iron‐oxygen intermediates like iron(III)‐hydroperoxo and high‐valent iron‐oxo species have been trapped and identified in investigations of these bio‐inspired catalytic systems, with the latter proposed to be the active oxidant for most of these systems. In this Review, we highlight the recent spectroscopic and mechanistic advances that have shed light on the various pathways that can be accessed by bio‐inspired nonheme iron systems to form the high‐valent iron‐oxo intermediates.

     
    more » « less
  4. null (Ed.)
    To ascertain the influence of binary ligand systems [1,1-dicyanoethylene-2,2-dithiolate (i-mnt −2 ) and polyamine {tetraen = tris(2-aminoethyl)amine, tren = diethylene triamine and opda = o -phenylenediamine}] on the coordination modes of the Ni( ii ) metal center and resulting supramolecular architectures, a series of nickel( ii ) thiolate complexes [Ni(tetraen)(i-mnt)](DMSO) ( 1 ), [Ni 2 (tren) 2 (i-mnt) 2 ] ( 2 ), and [Ni 2 (i-mnt) 2 (opda) 2 ] n ( 3 ) have been synthesized in high yield in one step in water and structurally characterized by single crystal X-ray crystallography and spectroscopic techniques. X-ray diffraction studies disclose the diverse i-mnt −2 coordination to the Ni +2 center in the presence of active polyamine ligands, forming a slightly distorted octahedral geometry (NiN 4 S 2 ) in 1 , square planar (NiS 4 ) and distorted octahedral geometries (NiN 6 ) in the bimetallic co-crystallized aggregate of cationic [Ni(tren) 2 ] +2 and anionic [Ni(i-mnt) 2 ] −2 in 2 , and a one dimensional (1D) polymeric chain along the [100] axis in 3 , having consecutive square planar (NiS 4 ) and octahedral (NiN 6 ) coordination kernels. The N–H⋯O, N–H⋯S, N–H⋯N, N–H⋯S, N–H⋯N, and N–H⋯O type hydrogen bonds stabilize the supramolecular assemblies in 1 , 2 , and 3 respectively imparting interesting graph-set-motifs. The molecular Hirshfeld surface analyses (HS) and 2D fingerprint plots were utilized for decoding all types of non-covalent contacts in the crystal networks. Atomic HS analysis of the Ni +2 centers reveals significant Ni–N metal–ligand interactions compared to Ni–S interactions. We have also studied the unorthodox interactions observed in the solid state structures of 1–3 by QTAIM and NBO analyses. Moreover, all the complexes proved to be highly active water reduction co-catalysts (WRC) in a photo-catalytic hydrogen evolution process involving iridium photosensitizers, wherein 2 and 3 having a square planar arrangement around the nickel center(s) – were found to be the most active ones, achieving 1000 and 1119 turnover numbers (TON), respectively. 
    more » « less
  5. Investigation of Cu–O 2 oxidation reactivity is important in biological and anthropogenic chemistry. Zeolites are one of the most promising Cu/O based oxidation catalysts for development of industrial-scale CH 4 to CH 3 OH conversion. Their oxidation mechanisms are not well understood, however, highlighting the importance of the investigation of molecular Cu( i )–O 2 reactivity with O-donor complexes. Herein, we give an overview of the synthesis, structural properties, and O 2 reactivity of three different series of O-donor fluorinated Cu( i ) alkoxides: K[Cu(OR) 2 ], [(Ph 3 P)Cu(μ-OR) 2 Cu(PPh 3 )], and K[(R 3 P)Cu(pin F )], in which OR = fluorinated monodentate alkoxide ligands and pin F = perfluoropinacolate. This breadth allowed for the exploration of the influence of the denticity of the ligand, coordination number, the presence of phosphine, and K⋯F/O interactions on their O 2 reactivity. K⋯F/O interactions were required to activate O 2 in the monodentate-ligand-only family, whereas these connections did not affect O 2 activation in the bidentate complexes, potentially due to the presence of phosphine. Both families formed trisanionic, trinuclear cores of the form {Cu 3 (μ 3 -O) 2 } 3− . Intramolecular and intermolecular substrate oxidation were also explored and found to be influenced by the fluorinated ligand. Namely, {Cu 3 (μ 3 -O) 2 } 3− from K[Cu(OR) 2 ] could perform both monooxygenase reactivity and oxidase catalysis, whereas those from K[(R 3 P)Cu(pin F )] could only perform oxidase catalysis. 
    more » « less