skip to main content


Title: Compositional optimizations for CertiCoq
Compositional compiler verification is a difficult problem that focuses on separate compilation of program components with possibly different verified compilers. Logical relations are widely used in proving correctness of program transformations in higher-order languages; however, they do not scale to compositional verification of multi-pass compilers due to their lack of transitivity. The only known technique to apply to compositional verification of multi-pass compilers for higher-order languages is parametric inter-language simulations (PILS), which is however significantly more complicated than traditional proof techniques for compiler correctness. In this paper, we present a novel verification framework for lightweight compositional compiler correctness . We demonstrate that by imposing the additional restriction that program components are compiled by pipelines that go through the same sequence of intermediate representations , logical relation proofs can be transitively composed in order to derive an end-to-end compositional specification for multi-pass compiler pipelines. Unlike traditional logical-relation frameworks, our framework supports divergence preservation—even when transformations reduce the number of program steps. We achieve this by parameterizing our logical relations with a pair of relational invariants . We apply this technique to verify a multi-pass, optimizing middle-end pipeline for CertiCoq, a compiler from Gallina (Coq’s specification language) to C. The pipeline optimizes and closure-converts an untyped functional intermediate language (ANF or CPS) to a subset of that language without nested functions, which can be easily code-generated to low-level languages. Notably, our pipeline performs more complex closure-allocation optimizations than the state of the art in verified compilation. Using our novel verification framework, we prove an end-to-end theorem for our pipeline that covers both termination and divergence and applies to whole-program and separate compilation, even when different modules are compiled with different optimizations. Our results are mechanized in the Coq proof assistant.  more » « less
Award ID(s):
2005545 1521602
PAR ID:
10322111
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
5
Issue:
ICFP
ISSN:
2475-1421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Verified compilation of open modules (i.e., modules whose functionality depends on other modules) provides a foundation for end-to-end verification of modular programs ubiquitous in contemporary software. However, despite intensive investigation in this topic for decades,the proposed approaches are still difficult to use in practice as they rely on assumptions about the internal working of compilers which make it difficult for external users to apply the verification results. We propose an approach to verified compositional compilation without such assumptions in the setting of verifying compilation of heterogeneous modules written in first-order languages supporting global memory and pointers. Our approach is based on the memory model of CompCert and a new discovery that a Kripke relation with a notion of memory protection can serve as a uniform and composable semantic interface for the compiler passes. By absorbing the rely-guarantee conditions on memory evolution for all compiler passes into this Kripke Memory Relation and by piggybacking requirements on compiler optimizations onto it, we get compositional correctness theorems for realistic optimizing compilers as refinements that directly relate native semantics of open modules and that are ignorant of intermediate compilation processes. Such direct refinements support all the compositionality and adequacy properties essential for verified compilation of open modules. We have applied this approach to the full compilation chain of CompCert with its Clight source language and demonstrated that our compiler correctness theorem is open to composition and intuitive to use with reduced verification complexity through end-to-end verification of non-trivial heterogeneous modules that may freely invoke each other (e.g.,mutually recursively).

     
    more » « less
  2. This paper presents ProbCompCert, a compiler for a subset of the Stan probabilistic programming language (PPL), in which several key compiler passes have been formally verified using the Coq proof assistant. Because of the probabilistic nature of PPLs, bugs in their compilers can be difficult to detect and fix, making verification an interesting possibility. However, proving correctness of PPL compilation requires new techniques because certain transformations performed by compilers for PPLs are quite different from other kinds of languages. This paper describes techniques for verifying such transformations and their application in ProbCompCert. In the course of verifying ProbCompCert, we found an error in the Stan language reference manual related to the semantics and implementation of a key language construct. 
    more » « less
  3. Cryptographic tools like proof systems, multi-party computation, and fully homomorphic encryption are usually applied to computations expressed as systems of arithmetic constraints. In practice, this means that these applications rely on compilers from high-level programming languages (like C) to such constraints. This compilation task is challenging, but not entirely new: the software verification community has a rich literature on compiling programs to logical constraints (like SAT or SMT). In this work, we show that building shared compiler infrastructure for compiling to constraint representations is possible, because these representations share a common abstraction: stateless, non-uniform, non-deterministic computations that we call existentially quantified circuits, or EQCs. Moreover, we show that this shared infrastructure is useful, because it allows compilers for proof systems to benefit from decades of work on constraint compilation techniques for software verification. To make our approach concrete we create CirC, an infrastructure for building compilers to EQCs. CirC makes it easy to compile to new EQCs: we build support for three, R1CS (used for proof systems), SMT (used for verification and bug-finding), and ILP (used for optimization), in ≈2000 LOC. It’s also easy to extend CirC to support new source languages: we build a feature-complete compiler for a cryptographic language in one week and ≈900 LOC, whereas the reference compiler for the same language took years to write, comprises ≈24000 LOC, and produces worse-performing output than our compiler. Finally, CirC enables novel applications that combine multiple EQCs. For example, we build the first pipeline that (1) automatically identifies bugs in programs, then (2) automatically constructs cryptographic proofs of the bugs’ existence. 
    more » « less
  4. Since the introduction of CompCert, researchers have been refining its language semantics and correctness theorem, and used them as components in software verification efforts. Meanwhile, artifacts ranging from CPU designs to network protocols have been successfully verified, and there is interest in making them interoperable to tackle end-to-end verification at an even larger scale. Recent work shows that a synthesis of game semantics, refinement-based methods, and abstraction layers has the potential to serve as a common theory of certified components. Integrating certified compilers to such a theory is a critical goal. However, none of the existing variants of CompCert meets the requirements we have identified for this task. CompCertO extends the correctness theorem of CompCert to characterize compiled program components directly in terms of their interaction with each other. Through a careful and compositional treatment of calling conventions, this is achieved with minimal effort. 
    more » « less
  5. This paper presents Giallar, a fully-automated verification toolkit for quantum compilers. Giallar requires no manual specifications, invariants, or proofs, and can automatically verify that a compiler pass preserves the semantics of quantum circuits. To deal with unbounded loops in quantum compilers, Giallar abstracts three loop templates, whose loop invariants can be automatically inferred. To efficiently check the equivalence of arbitrary input and output circuits that have complicated matrix semantics representation, Giallar introduces a symbolic representation for quantum circuits and a set of rewrite rules for showing the equivalence of symbolic quantum circuits. With Giallar, we implemented and verified 44 (out of 56) compiler passes in 13 versions of the Qiskit compiler, the open-source quantum compiler standard, during which three bugs were detected in and confirmed by Qiskit. Our evaluation shows that most of Qiskit compiler passes can be automatically verified in seconds and verification imposes only a modest overhead to compilation performance. 
    more » « less