skip to main content

Title: Deriving efficient program transformations from rewrite rules
An efficient optimizing compiler can perform many cascading rewrites in a single pass, using auxiliary data structures such as variable binding maps, delayed substitutions, and occurrence counts. Such optimizers often perform transformations according to relatively simple rewrite rules, but the subtle interactions between the data structures needed for efficiency make them tricky to write and trickier to prove correct. We present a system for semi-automatically deriving both an efficient program transformation and its correctness proof from a list of rewrite rules and specifications of the auxiliary data structures it requires. Dependent types ensure that the holes left behind by our system (for the user to fill in) are filled in correctly, allowing the user low-level control over the implementation without having to worry about getting it wrong. We implemented our system in Coq (though it could be implemented in other logics as well), and used it to write optimization passes that perform uncurrying, inlining, dead code elimination, and static evaluation of case expressions and record projections. The generated implementations are sometimes faster, and at most 40% slower, than hand-written counterparts on a small set of benchmarks; in some cases, they require significantly less code to write and prove correct.
Authors:
;
Award ID(s):
2005545 1521602
Publication Date:
NSF-PAR ID:
10322112
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
5
Issue:
ICFP
ISSN:
2475-1421
Sponsoring Org:
National Science Foundation
More Like this
  1. The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert datamore »scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge.« less
  2. Many data processing systems allow SQL queries that call user-defined functions (UDFs) written in conventional programming languages. While such SQL extensions provide convenience and flexibility to users, queries involving UDFs are not as efficient as their pure SQL counterparts that invoke SQL’s highly-optimized built-in functions. Motivated by this problem, we propose a new technique for translating SQL queries with UDFs to pure SQL expressions. Unlike prior work in this space, our method is not based on syntactic rewrite rules and can handle a much more general class of UDFs. At a high-level, our method is based on counterexample-guided inductive synthesis (CEGIS) but employs a novel compositional strategy that decomposes the synthesis task into simpler sub-problems. However, because there is no universal decomposition strategy that works for all UDFs, we propose a novel lazy inductive synthesis approach that generates a sequence of decompositions that correspond to increasingly harder inductive synthesis problems. Because most realistic UDF-to-SQL translation tasks are amenable to a fine-grained decomposition strategy, our lazy inductive synthesis method scales significantly better than traditional CEGIS. We have implemented our proposed technique in a tool called CLIS for optimizing Spark SQL programs containing Scala UDFs. To evaluate CLIS, we manually study 100more »randomly selected UDFs and find that 63 of them can be expressed in pure SQL. Our evaluation on these 63 UDFs shows that CLIS can automatically synthesize equivalent SQL expressions in 92% of the cases and that it can solve 2.4× more benchmarks compared to a baseline that does not use our compositional approach. We also show that CLIS yields an average speed-up of 3.5× for individual UDFs and 1.3× to 3.1× in terms of end-to-end application performance.« less
  3. Automatically transforming programs is hard, yet critical for automated program refactoring, rewriting, and repair. Multi-language syntax transformation is especially hard due to heterogeneous representations in syntax, parse trees, and abstract syntax trees (ASTs). Our insight is that the problem can be decomposed such that (1) a common grammar expresses the central context-free language (CFL) properties shared by many contemporary languages and (2) open extension points in the grammar allow customizing syntax (e.g., for balanced delimiters) and hooks in smaller parsers to handle language-specific syntax (e.g., for comments). Our key contribution operationalizes this decomposition using a Parser Parser combinator (PPC), a mechanism that generates parsers for matching syntactic fragments in source code by parsing declarative user-supplied templates. This allows our approach to detach from translating input programs to any particular abstract syntax tree representation, and lifts syntax rewriting to a modularly-defined parsing problem. A notable effect is that we skirt the complexity and burden of defining additional translation layers between concrete user input templates and an underlying abstract syntax representation. We demonstrate that these ideas admit efficient and declarative rewrite templates across 12 languages, and validate effectiveness of our approach by producing correct and desirable lightweight transformations on popular real-world projectsmore »(over 50 syntactic changes produced by our approach have been merged into 40+). Our declarative rewrite patterns require an order of magnitude less code compared to analog implementations in existing, language-specific tools.« less
  4. Transactional memory (TM) is heavily used for synchronization in the Haskell programming language, but its performance has historically been poor. We set out to improve this performance using hardware TM (HTM) on Intel processors. This task is complicated by Haskell's retry mechanism, which requires information to escape aborted transactions, and by the heavy use of indirection in the Haskell runtime, which means that even small transactions are likely to over-flow hardware buffers. It is eased by functional semantics, which preclude irreversible operations; by the static separation of transactional state, which precludes privatization; and by the error containment of strong typing, which enables so-called lazy subscription to the lock that protects the "fallback" code path. We describe a three-level hybrid TM system for the Glasgow Haskell Compiler (GHC). Our system first attempts to perform an entire transaction in hardware. Failing that, it falls back to software tracking of read and write sets combined with a commit-time hardware transaction. If necessary, it employs a global lock to serialize commits (but still not the bodies of transactions). To get good performance from hardware TM while preserving Haskell semantics, we use Bloom filters for read and write set tracking. We also implemented and extendedmore »the newly proposed mutable constructor fields language feature to significantly reduce indirection. Experimental results with complex data structures show significant improvements in throughput and scalability.« less
  5. Shared register emulations on top of message- passing systems provide an illusion of a simpler shared memory system which can make the task of a system designer easier. Numerous shared register applications have a considerably high read to write ratio. Thus having algorithms that make reads more efficient than writes is a fair trade-off. Typically such algorithms for reads and writes are asymmetric and sacrifice the stringent consistency condition atomicity as it is impossible to have fast reads for multi-writer atomicity. Safety is a consistency condition has has gathered interest from both the systems and theory community as it is weaker than atomicity yet provides strong enough guarantees like “strong consistency” or read-my-write consistency. One requirement that is assumed by many researchers is that of the reliable broadcast (RB) primitive, which ensures the all or none property during a broadcast. One drawback is that such a primitive takes 1.5 rounds to complete. This paper implements an efficient multi-writer multi-reader safe register without using a reliable broadcast primitive. More- over, we provide fast reads or one-shot reads – our read operation can be completed in one round of client-to-server communication. Of course, this comes with the price of requiring more serversmore »when compared to prior solutions assuming reliable broadcast. However, we show that this increased number of servers is indeed necessary as we prove a tight bound on the number of servers required to implement Byzantine-fault tolerant safe registers in a system without reliable broadcast. We extend our results to data stored using erasure coding as well. We present an emulation of single-writer multi-reader safe register based on MDS code. The usage of MDS code reduces storage cost and communication cost. On the negative side, we also show that to use MDS code and achieve one-shot read at the same time, we need even more servers.« less