skip to main content

Title: A multi-tasking stomach: functional coexistence of acid–peptic digestion and defensive body inflation in three distantly related vertebrate lineages
Puffer and porcupine fishes (families Diodontidae and Tetraodontidae, order Tetradontiformes) are known for their extraordinary ability to triple their body size by swallowing and retaining large amounts of seawater in their accommodating stomachs. This inflation mechanism provides a defence to predation; however, it is associated with the secondary loss of the stomach's digestive function. Ingestion of alkaline seawater during inflation would make acidification inefficient (a potential driver for the loss of gastric digestion), paralleled by the loss of acid–peptic genes. We tested the hypothesis of stomach inflation as a driver for the convergent evolution of stomach loss by investigating the gastric phenotype and genotype of four distantly related stomach inflating gnathostomes: sargassum fish, swellshark, bearded goby and the pygmy leatherjacket. Strikingly, unlike in the puffer/porcupine fishes, we found no evidence for the loss of stomach function in sargassum fish, swellshark and bearded goby. Only the pygmy leatherjacket (Monochanthidae, Tetraodontiformes) lacked the gastric phenotype and genotype. In conclusion, ingestion of seawater for inflation, associated with loss of gastric acid secretion, is restricted to the Tetraodontiformes and is not a selective pressure for gastric loss in other reported gastric inflating fishes.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Biology Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The oral route is the most common choice for drug administration because of several advantages, such as convenience, low cost, and high patient compliance, and the demand and investment in research and development for oral drugs continue to grow. The rate of dissolution and gastric emptying of the dissolved active pharmaceutical ingredient (API) into the duodenum is modulated by gastric motility, physical properties of the pill, and the contents of the stomach, but current in vitro procedures for assessing dissolution of oral drugs are limited in their ability to recapitulate this process. This is particularly relevant for disease conditions, such as gastroparesis, that alter the anatomy and/or physiology of the stomach. In silico models of gastric biomechanics offer the potential for overcoming these limitations of existing methods. In the current study, we employ a biomimetic in silico simulator based on the realistic anatomy and morphology of the stomach (referred to as “StomachSim”) to investigate and quantify the effect of body posture and stomach motility on drug bioavailability. The simulations show that changes in posture can potentially have a significant (up to 83%) effect on the emptying rate of the API into the duodenum. Similarly, a reduction in antral contractility associated with gastroparesis can also be found to significantly reduce the dissolution of the pill as well as emptying of the API into the duodenum. The simulations show that for an equivalent motility index, the reduction in gastric emptying due to neuropathic gastroparesis is larger by a factor of about five compared to myopathic gastroparesis. 
    more » « less
  2. A computational model of drug dissolution in the human stomach is developed to investigate the interaction between gastric flow and orally administrated drug in the form of a solid tablet. The stomach model is derived from the anatomical imaging data and the motion and dissolution of the drug in the stomach are modeled via fluid-structure interaction combined with mass transport simulations. The effects of gastric motility and the associated fluid dynamics on the dissolution characteristics are investigated. Two different pill densities are considered to study the effects of the gastric flow as well as the gravitational force on the motion of the pill. The average mass transfer coefficient and the spatial distributions of the dissolved drug concentration are analyzed in detail. The results show that the retropulsive jet and recirculating flow in the antrum generated by the antral contraction wave play an important role in the motion of the pill as well as the transport and mixing of the dissolved drug concentration. It is also found that the gastric flow can increase the dissolution mass flux, especially when there is substantial relative motion between the gastric flow and the pill. 
    more » « less
  3. Abstract

    Domoic acid (DA) and saxitoxin (STX)‐producing algae are present in Alaskan seas, presenting exposure risks to marine mammals that may be increasing due to climate change. To investigate potential increases in exposure risks to four pagophilic ice seal species (Erignathus barbatus, bearded seals;Pusa hispida, ringed seals;Phoca largha, spotted seals; andHistriophoca fasciata, ribbon seals), this study analyzed samples from 998 seals harvested for subsistence purposes in western and northern Alaska during 2005–2019 for DA and STX. Both toxins were detected in bearded, ringed, and spotted seals, though no clinical signs of acute neurotoxicity were reported in harvested seals. Bearded seals had the highest prevalence of each toxin, followed by ringed seals. Bearded seal stomach content samples from the Bering Sea showed a significant increase in DA prevalence with time (logistic regression,p = .004). These findings are consistent with predicted northward expansion of DA‐producing algae. A comparison of paired samples taken from the stomachs and colons of 15 seals found that colon content consistently had higher concentrations of both toxins. Collectively, these results suggest that ice seals, particularly bearded seals (benthic foraging specialists), are suitable sentinels for monitoring HAB prevalence in the Pacific Arctic and subarctic.

    more » « less
  4. Fish-associated microorganisms are known to be affected by the environment and other external factors, such as microbial transfer between interacting partners. One of the most iconic mutualistic interactions on coral reefs is the cleaning interactions between cleaner fishes and their clients, during which direct physical contact occurs. Here, we characterized the skin bacteria of the Caribbean cleaner sharknose goby, Elacatinus evelynae, in four coral reefs of the US Virgin Islands using sequencing of the V4 region of the 16S rRNA gene. We specifically tested the relationship between gobies’ level of interaction with clients and skin microbiota diversity and composition. Our results showed differences in microbial alpha- and beta-diversity in the skin of gobies from different reef habitats and high inter-individual variation in microbiota diversity and structure. Overall, the results showed that fish-to-fish direct contact and specifically, access to a diverse clientele, influences the bacterial diversity and structure of cleaner gobies’ skin. Because of their frequent contact with clients, and therefore, high potential for microbial exchange, cleaner fish may serve as models in future studies aiming to understand the role of social microbial transfer in reef fish communities. 
    more » « less
  5. Abstract Indigenous freshwater mussels (Unionidae) are integral to riverine ecosystems, playing a pivotal role in aquatic food webs and providing ecological services. With populations on the decline worldwide, freshwater mussels are of conservation concern. In this study, we explore the propensity of the invasive Round Goby (Neogobius melanostomus) fish to prey upon indigenous freshwater mussels. First, we conducted lab experiments where Round Gobies were given the opportunity to feed on juvenile unionid mussels and macroinvertebrates, revealing rates and preferences of consumption. Several Round Gobies consumed whole freshwater mussels during these experiments, as confirmed by mussel counts and x-ray images of the fishes. Next, we investigated Round Gobies collected from stream habitats of the French Creek watershed, which is renowned for its unique and rich aquatic biodiversity. We developed a novel DNA metabarcoding method to identify the specific species of mussels consumed by Round Goby and provide a new database of DNA gene sequences for 25 indigenous unionid mussel species. Several of the fishes sampled had consumed indigenous mussels, including the Elktoe (non-endangered), Creeper (non-endangered), Long Solid (state endangered), and Rayed Bean (federally endangered) species. The invasive Round Goby poses a growing threat to unionid mussels, including species of conservation concern. The introduction of the invasive Round Goby to freshwaters of North America is shaping ecosystem transitions within the aquatic critical zone having widespread implications for conservation and management. 
    more » « less