Abstract Humans use language toward hateful ends, inciting violence and genocide, intimidating and denigrating others based on their identity. Despite efforts to better address the language of hate in the public sphere, the psychological processes involved in hateful language remain unclear. In this work, we hypothesize that morality and hate are concomitant in language. In a series of studies, we find evidence in support of this hypothesis using language from a diverse array of contexts, including the use of hateful language in propaganda to inspire genocide (Study 1), hateful slurs as they occur in large text corpora across a multitude of languages (Study 2), and hate speech on social-media platforms (Study 3). In post hoc analyses focusing on particular moral concerns, we found that the type of moral content invoked through hate speech varied by context, with Purity language prominent in hateful propaganda and online hate speech and Loyalty language invoked in hateful slurs across languages. Our findings provide a new psychological lens for understanding hateful language and points to further research into the intersection of morality and hate, with practical implications for mitigating hateful rhetoric online.
more »
« less
Introducing the Gab Hate Corpus: defining and applying hate-based rhetoric to social media posts at scale
More Like this
-
-
Abstract Social stereotypes negatively impact individuals’ judgments about different groups and may have a critical role in understanding language directed toward marginalized groups. Here, we assess the role of social stereotypes in the automated detection of hate speech in the English language by examining the impact of social stereotypes on annotation behaviors, annotated datasets, and hate speech classifiers. Specifically, we first investigate the impact of novice annotators’ stereotypes on their hate-speech-annotation behavior. Then, we examine the effect of normative stereotypes in language on the aggregated annotators’ judgments in a large annotated corpus. Finally, we demonstrate how normative stereotypes embedded in language resources are associated with systematic prediction errors in a hate-speech classifier. The results demonstrate that hate-speech classifiers reflect social stereotypes against marginalized groups, which can perpetuate social inequalities when propagated at scale. This framework, combining social-psychological and computational-linguistic methods, provides insights into sources of bias in hate-speech moderation, informing ongoing debates regarding machine learning fairness.more » « less
An official website of the United States government

