Patterns of plant biomass partitioning are fundamental to estimates of primary productivity and ecosystem process rates. Allometric relationships between aboveground plant biomass and non-destructive measures of plant size, such as cover, volume, or stem density are widely used in plant ecology. Such size-biomass allometry is often assumed to be invariant for a given plant species, plant functional group, or ecosystem type. Allometric adjustments may be an important component of the short- or long-term responses of plants to abiotic conditions. We used 18 years of size-biomass data describing 85 plant species to investigate the sensitivity of allometry to precipitation, temperature, or drought across two seasons and four ecosystems in central New Mexico, USA. Our results demonstrate that many plant species adjust patterns in the partitioning of aboveground biomass under different climates and highlight the importance of long-term data for understanding functional differences among plant species.
more »
« less
Microbial mediators of plant community response to long‐term N and P fertilization: Evidence of a role of plant responsiveness to mycorrhizal fungi
More Like this
-
-
Abstract Patterns of plant biomass partitioning are fundamental to estimates of primary productivity and ecosystem process rates. Allometric relationships between above‐ground plant biomass and non‐destructive measures of plant size, such as cover, volume or stem density are widely used in plant ecology. Such size‐biomass allometry is often assumed to be invariant for a given plant species, plant functional group or ecosystem type.Allometric adjustment may be an important component of the short‐ or long‐term response of plants to abiotic conditions. We used 18 years of size‐biomass data describing of 85 plant species to investigate the sensitivity of allometry to precipitation, temperature or drought across two seasons and four ecosystems in central New Mexico, USA.Size‐biomass allometry varied with climate in 65%–70% of plant species. Closely related plant species had similar sensitivities of allometry to natural spatiotemporal variation in precipitation, temperature or drought. Annuals were less sensitive than perennials, and forbs were less sensitive than grasses or shrubs. However, the differences associated with plant life history or functional group were not independent of plant evolutionary history, as supported by the application of phylogenetically independent contrasts.Our results demonstrate that many plant species adjust patterns in the partitioning of above‐ground biomass under different climates and highlight the importance of long‐term data for understanding functional differences among plant species. A freePlain Language Summarycan be found within the Supporting Information of this article.more » « less
-
Abstract Systemic acquired acclimation and wound signaling require the transmission of electrical, calcium, and reactive oxygen species (ROS) signals between local and systemic tissues of the same plant. However, whether such signals can be transmitted between two different plants is largely unknown. Here, we reveal a new type of plant-to-plant aboveground direct communication involving electrical signaling detected at the surface of leaves, ROS, and photosystem networks. A foliar electrical signal induced by wounding or high light stress applied to a single dandelion leaf can be transmitted to a neighboring plant that is in direct contact with the stimulated plant, resulting in systemic photosynthetic, oxidative, molecular, and physiological changes in both plants. Furthermore, similar aboveground changes can be induced in a network of plants serially connected via touch. Such signals can also induce responses even if the neighboring plant is from a different plant species. Our study demonstrates that electrical signals can function as a communication link between transmitter and receiver plants that are organized as a network (community) of plants. This process can be described as network-acquired acclimation.more » « less
-
Abstract The plastic responses of plants to abiotic and biotic environmental factors have generally been addressed separately; thus we have a poor understanding of how these factors interact. For example, little is known about the effects of plant–plant interactions on the plasticity of plants in response to water availability. Furthermore, few studies have compared the effects of intra‐ and interspecific interactions on plastic responses to abiotic factors. To explore the effects of intraspecific and interspecific plant–plant interactions on plant responses to water availability, we grewLeucanthemumvulgareandPotentillarectawith a conspecific or the other species, and grew pairs of each species as controls in pots with the roots, but not shoots, physically separated. We subjected these competitive arrangements to mesic and dry conditions, and then measured shoot mass, root mass, total mass and root : shoot ratio and calculated plasticity in these traits. The total biomass of both species was highly suppressed by both intra‐ and interspecific interactions in mesic soil conditions. However, in drier soil, intraspecific interactions for both species and the effect ofP. rectaonL. vulgarewere facilitative. For plasticity in response to water supply, when adjusted for total biomass, drought increased shoot mass, and decreased root mass and root : shoot ratios for both species in intraspecific interactions. When grown alone, there were no plastic responses in any trait except total mass, for either species. Our results suggested that plants interacting with other plants often show improved tolerance for drought than those grown alone, perhaps because of neighbor‐induced shifts in plasticity in biomass allocation. Facilitative effects might also be promoted by plasticity to drought in root : shoot ratios.more » « less
An official website of the United States government

