null
(Ed.)
Mammals are noteworthy for their striking ecomorphological diversity in comparison to their non-mammalian synapsid ancestors. However, the lack of a large phenotypic sample coupled with a phylogeny has hindered examination of this characteristic’s acquisition. Did this diversity accumulate at a constant pace, or did evolutionary rate vary between clades and elements? Here I present an analysis of phenotypic evolutionary rate for synapsid forelimbs using 2D geometric morphometric data of 1279 fossil elements, and a time-calibrated composite tree of 160 genera. Rate comparisons were made for five radiations (‘pelycosaurs’, non-cynodont therapsids, non-mammalian cynodonts, Mammaliaformes, Mammalia), and three functional subunits of the forelimb (proximal humerus, distal humerus, ulna). Mammaliaforms were characterized by the highest evolutionary rates for all functional units, followed by therapsids. Both of these groups underwent major ecomorphological diversifications, and the highest rates are found in taxa characterized by specialized forelimb ecologies, such as fossorial dicynodonts (Therapsida) or the semi-aquatic Haldanodon (Mammaliaformes). In all groups the proximal humerus displayed higher rates than the distal humerus, with the highest found in mammaliaforms and therapsids. These groups underwent dramatic morphological change, especially in the gleno-humeral joint. Critically though, the ulna displays the highest evolutionary rates across all groups, highlighting the underappreciated role the ulna played in the morphological and functional transformations of the synapsid forelimb. The simplification of the structure likely increased the possibility for expansion into new morphologies and played a key role in facilitating ecomorphological diversification. Overall, therapsids and mammaliaforms can both be characterized by important functional changes to the forelimb that likely played a role in this dynamic. Phylogenetic signal also varied across the sample, with Pelycosaurs and non-mammalian cynodonts displaying the lowest levels. This in turn reflects these groups’ conservative forelimb morphologies, especially compared with other synapsid clades. Together, these results demonstrate that synapsid forelimb evolution should be characterized as a dynamic and complex accumulation of ‘mammalian’ morphologies. Evolutionary rates varied across taxa and elements as clades adapted their forelimbs in particular ways to accommodate novel ecologies and functions. Funding Sources NSF DEB-1754502, Field Museum Women-in-Science Graduate Fellowship.
more »
« less
An official website of the United States government

