skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: The Precursor Phase of an X-class Flare: Magnetic Reconnection, Powering and Non-thermal Electrons
Abstract In this paper, we report three interesting phenomena that occurred during the precursor phase of the X1.6 class flare on 2014 September 10. (1) The magnetic reconnection initiating the flare occurs between one of the two J-shaped magnetic flux ropes that constitute a sigmoidal structure and the overlying sheared magnetic arcade that runs across the sigmoid over its middle part. The reconnection formed an erupting structure that ultimately leads to flare onset. Another J-shaped magnetic flux rope remains unaffected during the whole eruption. The phenomenon is revealed by the observation made by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory (SDO) at 94 and 131 Å. (2) Being simultaneously with starting time of the precursor, photospheric vertical electric current (VEC) around the footpoint region of the overlying magnetic arcade underwent an obvious increase, as observed by the Helioseismic and Magnetic Imager (HMI) on board SDO. By only taking into account the VEC with current density over 3 σ value (1 σ : 10 mA m −2 ), we are able to pick out precursor-associated VEC increase starting from nearly the level of zero. We regard it as a kind of powering process for the magnetic reconnection between the two magnetic loops. (3) With high-resolution narrow-band Helium 10830 Å images taken by Goode Solar Telescope at Big Bear Solar Observatory (BBSO), we observe a narrow absorption (dark) front that runs along the erupting magnetic structure (or the erupting hot channel) and moves in the direction of the eruption during the precursor phase. Assuming the excitation mechanism of Helium atoms along the absorption front by non-thermal electrons, the phenomenon shows that the interaction between the erupted hot channel and the overlying (or surrounding) magnetic field has yielded electron acceleration.  more » « less
Award ID(s):
1821294
NSF-PAR ID:
10322447
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Research in Astronomy and Astrophysics
Volume:
22
Issue:
1
ISSN:
1674-4527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The solar active region NOAA 12887 produced a strong X1.0 flare on 2021 October 28, which exhibits X-shaped flare ribbons and a circle-shaped erupting filament. To understand the eruption process with these characteristics, we conducted a data-constrained magnetohydrodynamics simulation using a nonlinear force-free field of the active region about an hour before the flare as the initial condition. Our simulation reproduces the filament eruption observed in the H α images of GONG and the 304 Å images of SDO/AIA, and suggests that two mechanisms can possibly contribute to the magnetic eruption. One is the torus instability of the preexisting magnetic flux rope (MFR) and the other is upward pushing by magnetic loops newly formed below the MFR via continuous magnetic reconnection between two sheared magnetic arcades. The presence of this reconnection is evidenced by the SDO/AIA observations of the 1600 Å brightening in the footpoints of the sheared arcades at the flare onset. To clarify which process is more essential for the eruption, we performed an experimental simulation in which the reconnection between the sheared field lines is suppressed. In this case too, the MFR could erupt, but at a much reduced rising speed. We interpret this result as indicating that the eruption is not only driven by the torus instability, but additionally accelerated by newly formed and rising magnetic loops under continuous reconnection. 
    more » « less
  2. Abstract Solar jets are ubiquitous phenomena in the solar atmosphere. They are important in mass and energy transport to the upper atmosphere and interplanetary space. Here, we report a detailed analysis of a small-scale chromospheric jet with high-resolution He i 10830 Å and TiO 7057 Å images observed by the 1.6 m aperture Goode Solar Telescope at the Big Bear Solar Observatory. The observation reveals the finest dark threads inside the jet are rooted in the intergranular lanes. Their width is equal to the telescope’s diffraction limit at 10830 Å (∼100 km). The jet is recurrent and its association with the emergence and convergence of magnetic flux is observed. Together with other important features like photospheric flow toward the magnetic polarity inversion line, a bald-patch magnetic configuration, and earlier excitation of helium atoms, we propose that the jet might be initiated by magnetic reconnection in a U-shaped loop configuration. The plasmoid configuration results from the possible buoyancy of the magnetic reconnection, which reoccurs in a second step with an overlying magnetic field line. Notably, the second-step magnetic reconnection produces not only bidirectional cool or hot flows but also a new U-shaped loop configuration. The feature may be used to explain the recurrent behavior of the jet, since the new U-shaped loop can be driven to reconnect again. 
    more » « less
  3. Solar jets are well-collimated plasma ejections in the solar atmosphere. They are prevalent in active regions, the quiet Sun, and even coronal holes. They display a range of temperatures, yet the nature of the cool components has not been fully investigated. In this paper, we show the existence of the precursors and quasi-periodic properties for two chromospheric jets, mainly utilizing the He  I 10 830 Å narrowband filtergrams taken by the Goode Solar Telescope (GST). The extreme ultraviolet (EUV) counterparts present during the eruption correspond to a blowout jet (jet 1) and a standard jet (jet 2), as observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). The high-resolution He  I 10 830 Å observation captures a long-lasting precursor for jet 1, signified by a series of cool ejections. They are recurrent jet-like features with a quasi-period of about five minutes. On the other hand, the cool components of jet 2, recurrently accompanied by EUV emissions, present a quasi-periodic behavior with a period of about five minutes. Both the EUV brightening and He  I 10 830 Å absorption show that there was a precursor for jet 2 that occurred about five minutes before its onset. We propose that the precursor of jet 1 may be the consequence of chromospheric shock waves, since the five-minute oscillation from the photosphere can leak into the chromosphere and develop into shocks. Then, we find that the quasi-periodic behavior of the cool components of jet 2 may be related to magnetic reconnections modulated by the oscillation in the photosphere. 
    more » « less
  4. Abstract

    Magnetic field plays an important role in various solar eruption phenomena. The formation and evolution of the characteristic magnetic field topology in solar eruptions are critical problems that will ultimately help us understand the origin of these eruptions in the solar source regions. With the development of advanced techniques and instruments, observations with higher resolutions in different wavelengths and fields of view have provided more quantitative information for finer structures. It is therefore essential to improve the method with which we study the magnetic field topology in the solar source regions by taking advantage of high-resolution observations. In this study, we employ a nonlinear force-free field extrapolation method based on a nonuniform grid setting for an M-class flare eruption event (SOL2015-06-22T17:39) with embedded vector magnetograms from the Solar Dynamics Observatory (SDO) and the Goode Solar Telescope (GST). The extrapolation results for which the nonuniform embedded magnetogram for the bottom boundary was employed are obtained by maintaining the native resolutions of the corresponding GST and SDO magnetograms. We compare the field line connectivity with the simultaneous GST/Hαand SDO/Atmospheric Imaging Assembly observations for these fine-scale structures, which are associated with precursor brightenings. Then we perform a topological analysis of the field line connectivity corresponding to fine-scale magnetic field structures based on the extrapolation results. The analysis results indicate that when we combine the high-resolution GST magnetogram with a larger magnetogram from the SDO, the derived magnetic field topology is consistent with a scenario of magnetic reconnection among sheared field lines across the main polarity inversion line during solar flare precursors.

     
    more » « less
  5. Abstract In this paper, we report the observed temporal correlation between extreme-ultraviolet (EUV) emission and magneto-acoustic oscillations in an EUV moss region, which is the footpoint region only connected by magnetic loops with million-degree plasma. The result is obtained from a detailed multi-wavelength data analysis of the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere, pass through the chromosphere and finally heat the solar transition region or the corona. The data set covers three atmospheric levels on the Sun, consisting of high-resolution broad-band imaging at TiO 7057 Å and the line of sight magnetograms for the photosphere, high-resolution narrow-band images at helium i 10830 Å for the chromosphere and EUV images at 171 Å for the corona. The 10830 Å narrow-band images and the TiO 7057 Å broad-band images are from a much earlier observation on 2012 July 22 with the 1.6 meter aperture Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO) and the EUV 171 Å images and the magnetograms are from observations made by Atmospheric Imaging Assembly (AIA) or Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report the following new phenomena: (1) Repeated injections of chromospheric material appearing as 10830 Å absorption are squirted out from inter-granular lanes with a period of ∼ 5 minutes. (2) EUV emissions are found to be periodically modulated with similar periods of ∼ 5 minutes. (3) Around the injection area where 10830 Å absorption is enhanced, both EUV emissions and strength of the magnetic field are remarkably stronger. (4) The peaks on the time profile of the EUV emissions are found to be in sync with oscillatory peaks of the stronger magnetic field in the region. These findings may give a series of strong evidences supporting the scenario that coronal heating is powered by magneto-acoustic waves. 
    more » « less