skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intercalation of cobalt cations into Co 9 S 8 interlayers for highly efficient and stable electrocatalytic hydrogen evolution
Non-noble metal based electrocatalysts for the hydrogen evolution reaction (HER) hold great potential for commercial applications. However, effective design strategies are greatly needed to manipulate the catalyst structures to achieve high activity and stability comparable to those of noble-metal based electrocatalysts. Herein, we present a facile route to synthesize layered Co 9 S 8 intercalated with Co cations (Co 2+ -Co 9 S 8 ) (with interlayer distance up to 1.08 nm) via a one-step solvothermal method. Benefiting from a large interlayer distance and efficient electron transfer between layers, the Co 2+ -Co 9 S 8 hybrid shows outstanding electrocatalytic hydrogen evolution performance in an acid electrolyte. The electrocatalytic performance is even better than that of 20% Pt/C at the <−0.54 V region with an overpotential of 86 mV at a current density of 10 mA cm −2 in 0.5 mol L −1 H 2 SO 4 . More importantly, the system can maintain excellent stability for more than 12 h without obvious decay. This study not only presents a novel and efficient approach to synthesize cobalt sulfide intercalated with Co cations for stable electrocatalytic HER but also provides an avenue for the design of intercalated materials used in other energy applications.  more » « less
Award ID(s):
2000135 1757220 1700390
PAR ID:
10322477
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
10
Issue:
7
ISSN:
2050-7488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the face of rising atmospheric carbon dioxide (CO 2 ) emissions from fossil fuel combustion, the hydrogen evolution reaction (HER) continues to attract attention as a method for generating a carbon-neutral energy source for use in fuel cells. Since some of the best-known catalysts use precious metals like platinum, which have low natural abundance and high cost, developing efficient Earth abundant transition metal catalysts for HER is an important objective. Building off previous work with transition metal catalysts bearing 2,2′-bipyridine-based ligand frameworks, this work reports the electrochemical analysis of a molecular nickel( ii ) complex, which can act as an electrocatalyst for the HER with a faradaic efficiency for H 2 of 94 ± 8% and turnover frequencies of 103 ± 6 s −1 when pentafluorophenol is used as a proton donor. Computational studies of the Ni catalyst suggest that non-covalent interactions between the proton donor and ligand heteroatoms are relevant to the mechanism for electrocatalytic HER. 
    more » « less
  2. Abstract M5X4MXenes, a subclass of 2D transition metal carbides, have attracted attention as the thickest 2D material synthesized. Early studies show their promising electrocatalytic activity but overlooked how metal composition and interlayer spacing affect hydrogen evolution reaction (HER). To address this gap, three M5X4MXenes, Mo4VC4, (TiTa)5C4, and (TiNb)5C4, are systematically studied and their interlayer spacing and composition modulated through ion exchange with tetramethyl ammonium (TMA+vs. Li+), providing new insights into their HER activity. These findings reveal that TMA+‐intercalated Mo4VC4exhibits superior HER activity, achieving areal and gravimetric overpotentials of 172 and 90 mV, respectively, due to its composition (presence of Mo) and expanded interlayer spacing that enhances proton accessibility. The Li+exchange increases the overpotential to 212 and 131 mV at 10 mA areal and gravimetric current density, respectively, as reduced interlayer spacing restricts access to active Mo sites. In contrast, (TiNb)5C4and (TiTa)5C4display higher overpotentials, making them more suitable for supercapacitor or aqueous battery applications due to the wider electrochemical window. This study provides critical insights into the interplay between metal composition and interlayer engineering in M5X4MXenes, establishing TMA‐Mo4VC4as a promising candidate for sustainable hydrogen production. 
    more » « less
  3. Electrochemical conversion of CO 2 into value-added chemicals continues to draw interest in renewable energy applications. Although many metal catalysts are active in the CO 2 reduction reaction (CO 2 RR), their reactivity and selectivity are nonetheless hindered by the competing hydrogen evolution reaction (HER). The competition of the HER and CO 2 RR stems from the energy scaling relationship between their reaction intermediates. Herein, we predict that bimetallic monolayer electrocatalysts (BMEs) – a monolayer of transition metals on top of extended metal substrates – could produce dual-functional active sites that circumvent the scaling relationship between the adsorption energies of HER and CO 2 RR intermediates. The antibonding interaction between the adsorbed H and the metal substrate is revealed to be responsible for circumventing the scaling relationship. Based on extensive density functional theory (DFT) calculations, we identify 11 BMEs which are highly active and selective toward the formation of formic acid with a much suppressed HER. The H–substrate antibonding interaction also leads to superior CO 2 RR performance on monolayer-coated penta-twinned nanowires. 
    more » « less
  4. Abstract Solid‐state electrocatalysis plays a crucial role in the development of renewable energy to reshape current and future energy needs. However, finding an inexpensive and highly active catalyst to replace precious metals remains a big challenge for this technology. Here, tri‐molybdenum phosphide (Mo3P) is found as a promising nonprecious metal and earth‐abundant candidate with outstanding catalytic properties that can be used for electrocatalytic processes. The catalytic performance of Mo3P nanoparticles is tested in the hydrogen evolution reaction (HER). The results indicate an onset potential of as low as 21 mV, H2formation rate, and exchange current density of 214.7 µmol s−1g−1cat(at only 100 mV overpotential) and 279.07 µA cm−2, respectively, which are among the closest values yet observed to platinum. Combined atomic‐scale characterizations and computational studies confirm that high density of molybdenum (Mo) active sites at the surface with superior intrinsic electronic properties are mainly responsible for the remarkable HER performance. The density functional theory calculation results also confirm that the exceptional performance of Mo3P is due to neutral Gibbs free energy (ΔGH*) of the hydrogen (H) adsorption at above 1/2 monolayer (ML) coverage of the (110) surface, exceeding the performance of existing non‐noble metal catalysts for HER. 
    more » « less
  5. Abstract Two-dimensional (2D) molybdenum disulfide (MoS 2 ) has been recognized as a potential substitution of platinum (Pt) for electrochemical hydrogen evolution reaction (HER). However, the broad adoption of MoS 2 is hindered by its limited number of active sites and low inherent electrical conductivity. In this work, we employed a one-step solvothermal synthesis technique to construct a ternary hybrid structure consisting of dual-phase MoS 2, titanium carbide (Ti 3 C 2 ) MXene, and carbon nanotubes (CNTs), and demonstrated synergistic effects for active site exposure, surface area enlargement, and electrical conductivity improvement of the catalyst. The dual-phase MoS 2 (DP-MoS 2 ) is directly formed on the MXene with CNTs acting as crosslinks between 2D islands. The existence of edge-enriched metallic phase MoS 2 , the conductive backbone of MXene along with the crosslink function of CNTs clearly improves the overall HER performance of the ternary nanocomposite. Moreover, the integration of MoS 2 with MXene not only increases the interlayer distance of the 2D layers but also partially suppresses the MXene oxidation and the 2D layer restacking, leading to good catalytic stability. As a result, an overpotential of 169 mV and a low Tafel slope of 51 mV/dec was successfully achieved. This work paves a way for 2D-based electrocatalyst engineering and sheds light on the development of the next-generation noble metal-free HER electrocatalysts. 
    more » « less