skip to main content


Title: Synthesis of Biomimetic Melanin-Like Multifunctional Nanoparticles for pH Responsive Magnetic Resonance Imaging and Photothermal Therapy
The design and development of multifunctional nanoparticles have attracted great interest in biomedical research. This study aims to prepare pH-responsive melanin-like nanoparticles for T1-weighted magnetic resonance imaging (MRI) and photothermal therapy. The new multifunctional nanoparticles (amino-Fe-PDANPs) are synthesized by copolymerization of dopamine and its derivative amino-N-[2-(diethylamino) ethyl]-3,4-dihydroxy-benzenepropanamide (N-Dopa) at room temperature. The size of nanoparticles can be controlled by NaOH concentration. The incorporation of N-Dopa is characterized by NMR and FT-IR. From transmission electron microscopy (TEM), the nanoparticles exhibit excellent dispersion stability in water and are spherical in shape. The MRI measurement has demonstrated that amino-Fe-PDANPs have a significant signal enhancement in responding to the acidic solution. Confirmed by the photothermal study, the nanoparticles exhibit a high photothermal conversion efficiency. The melanin-like multifunctional nanoparticles integrate both diagnosis and therapeutic functionalities, indicating the potential for theranostic application.  more » « less
Award ID(s):
2000135 1700390
NSF-PAR ID:
10322478
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
11
Issue:
8
ISSN:
2079-4991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    3D‐bioprinted skin‐mimicking phantoms with skin colors ranging across the Fitzpatrick scale are reported. These tools can help understand the impact of skin phototypes on biomedical optics. Synthetic melanin nanoparticles of different sizes (70–500 nm) and clusters are fabricated to mimic the optical behavior of melanosome. The absorption coefficient and reduced scattering coefficient of the phantoms are comparable to real human skin. Further the melanin content and distribution in the phantoms versus real human skins are validated via photoacoustic (PA) imaging. The PA signal of the phantom can be improved by: 1) increasing melanin size (3–450‐fold), 2) increasing clustering (2–10.5‐fold), and 3) increasing concentration (1.3–8‐fold). Then, multiple biomedical optics tools (e.g., PA, fluorescence imaging, and photothermal therapy) are used to understand the impact of skin tone on these modalities. These well‐defined 3D‐bioprinted phantoms may have value in translating biomedical optics and reducing racial bias.

     
    more » « less
  2. To address critical energy issues in civic structures, we have developed a novel concept of optical thermal insulation (OTI) without relying on a conventional thermal intervention medium, such as air or argon, as often used in conventional window systems. We have synthesized the photothermal (PT) materials, such as the Fe 3 O 4 and Fe 3 O 4 @Cu 2− x S nanoparticles, that exhibit strong UV and near-infrared (NIR) absorptions but with good visible transparency. Upon coating the inner surface of the window glass with a PT film, under solar irradiation, the inner surface temperature rises due to the PT effect. Subsequently, the temperature difference, Δ T , is reduced between the single pane and room interior. This leads to lower the thermal loss through a window, reflected by the U -factor, resulting in considerable energy saving without double- or triple-glazing. Comparing with the Fe 3 O 4 coatings, Fe 3 O 4 @Cu 2− x S is spectrally characterized with a much stronger NIR absorbance, contributing to an increased PT efficiency under simulated solar irradiation (0.1 W/cm 2 ). PT experiments are carried out via both white light and monochromic NIR irradiations (785 nm). The parameters associated with the thermal performance of the PT films are calculated, including PT conversion efficiency, specific absorption rate (SAR), and U -factor. Based on the concept of OTI, we have reached an optimum U -factor of 1.46 W/m 2 K for a single pane, which is satisfactory to the DOE requirement (<1.7 W/m 2 K). 
    more » « less
  3. Abstract

    Popular bioadhesives, such as fibrin, cyanoacrylate, and albumin–glutaraldehyde based materials, have been applied for clinical applications in wound healing, drug delivery, and bone and soft tissue engineering; however, their performances are limited by weak adhesion strength and rapid degradation. In this study a mussel‐inspired, nanocomposite‐based, biodegradable tissue adhesive is developed by blending poly(lactic‐co‐glycolic acid) (PLGA) or N‐hydroxysuccinimide modified PLGA nanoparticles (PLGA‐NHS) with mussel‐inspired alginate–dopamine polymer (Alg‐Dopa). Adhesive strength measurement of the nanocomposites on porcine skin–muscle constructs reveals that the incorporation of nanoparticles in Alg‐Dopa significantly enhances the tissue adhesive strength compared to the mussel‐inspired adhesive alone. The nanocomposite formed by PLGA‐NHS nanoparticles shows higher lap shear strength of 33 ± 3 kPa, compared to that of Alg‐Dopa hydrogel alone (14 ± 2 kPa). In addition, these nanocomposites are degradable and cytocompatible in vitro, and elicit in vivo minimal inflammatory responses in a rat model, suggesting clinical potential of these nanocomposites as bioadhesives.

     
    more » « less
  4. Fungal melanins represent a resource for important breakthroughs in industry and medicine, but the characterization of their composition, synthesis, and structure is not well understood. Raman spectroscopy is a powerful tool for the elucidation of molecular composition and structure. In this work, we characterize the Raman spectra of wild-type Aspergillus fumigatus and Cryptococcus neoformans and their melanin biosynthetic mutants and provide a rough “map” of the DHN (A. fumigatus) and DOPA (C. neoformans) melanin biosynthetic pathways. We compare this map to the Raman spectral data of Aspergillus nidulans wild-type and melanin biosynthetic mutants obtained from a previous study. We find that the fully polymerized A. nidulans melanin cannot be classified according to the DOPA pathway; nor can it be solely classified according to the DHN pathway, consistent with mutational analysis and chemical inhibition studies. Our approach points the way forward for an increased understanding of, and methodology for, investigating fungal melanins. 
    more » « less
  5. Abstract Incorporation of metallic nanoparticles (NPs) in polymer matrix has been used to enhance and control dissolution and release of drugs, for targeted drug delivery, as antimicrobial agents, localized heat sources, and for unique optoelectronic applications. Gold NPs in particular exhibit a plasmonic response that has been utilized for photothermal energy conversion. Because plasmonic nanoparticles typically exhibit a plasmon resonance frequency similar to the visible light spectrum, they present as good candidates for direct photothermal conversion with enhanced solar thermal efficiency in these wavelengths. In our work, we have incorporated ∼3-nm-diameter colloidal gold (Au c ) NPs into electrospun polyethylene glycol (PEG) fibers to utilize the nanoparticle plasmonic response for localized heating and melting of the polymer to release medical treatment. Au c and Au c in PEG (PEG+Au c ) both exhibited a minimum reflectivity at 522 nm or approximately green wavelengths of light under ultraviolet-visible (UV-Vis) spectroscopy. PEG+Au c ES fibers revealed a blue shift in minimum reflectivity at 504 nm. UV-Vis spectra were used to calculate the theoretical efficiency enhancement of PEG+Au c versus PEG alone, finding an approximate increase of 10 % under broad spectrum white light interrogation, and ∼14 % when illuminated with green light. Au c enhanced polymers were ES directly onto resistance temperature detectors and interrogated with green laser light so that temperature change could be recorded. Results showed a maximum increase of 8.9 °C. To further understand how gold nanomaterials effect the complex optical properties of our materials, spectroscopic ellipsometry was used. Using spectroscopic ellipsometry and modeling with CompleteEASE® software, the complex optical constants of our materials were determined. The complex optical constant n (index of refraction) provided us with optical density properties related to light wavelength divided by velocity, and k (extinction coefficient) was used to show the absorptive properties of the materials. 
    more » « less