skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-J CO Line Ratios from Single-dish CO Mapping Surveys and PHANGS-ALMA
Abstract We measure the low- J CO line ratios R 21 ≡ CO (2–1)/CO (1–0), R 32 ≡ CO (3–2)/CO (2–1), and R 31 ≡CO (3–2)/CO (1–0) using whole-disk CO maps of nearby galaxies. We draw CO (2–1) from PHANGS-ALMA, HERACLES, and follow-up IRAM surveys; CO (1–0) from COMING and the Nobeyama CO Atlas of Nearby Spiral Galaxies; and CO (3–2) from the James Clerk Maxwell Telescope Nearby Galaxy Legacy Survey and Atacama Pathfinder Experiment Large APEX Sub-Millimetre Array mapping. All together, this yields 76, 47, and 29 maps of R 21 , R 32 , and R 31 at 20″ ∼ 1.3 kpc resolution, covering 43, 34, and 20 galaxies. Disk galaxies with high stellar mass, log ( M ⋆ / M ⊙ ) = 10.25 – 11 , and star formation rate (SFR) = 1–5 M ⊙ yr −1 , dominate the sample. We find galaxy-integrated mean values and a 16%–84% range of R 21 = 0.65 (0.50–0.83), R 32 = 0.50 (0.23–0.59), and R 31 = 0.31 (0.20–0.42). We identify weak trends relating galaxy-integrated line ratios to properties expected to correlate with excitation, including SFR/ M ⋆ and SFR/ L CO . Within galaxies, we measure central enhancements with respect to the galaxy-averaged value of ∼ 0.18 − 0.14 + 0.09 dex for R 21 , 0.27 − 0.15 + 0.13 dex for R 31 , and 0.08 − 0.09 + 0.11 dex for R 32 . All three line ratios anticorrelate with galactocentric radius and positively correlate with the local SFR surface density and specific SFR, and we provide approximate fits to these relations. The observed ratios can be reasonably reproduced by models with low temperature, moderate opacity, and moderate densities, in good agreement with expectations for the cold interstellar medium. Because the line ratios are expected to anticorrelate with the CO (1–0)-to-H 2 conversion factor, α CO 1 − 0 , these results have general implications for the interpretation of CO emission from galaxies.  more » « less
Award ID(s):
1653300
PAR ID:
10322503
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present new HCN and HCO+(J= 3–2) images of the nearby star-forming galaxies (SFGs) NGC 3351, NGC 3627, and NGC 4321. The observations, obtained with the Morita ALMA Compact Array, have a spatial resolution of ∼290–440 pc and resolve the innerRgal ≲ 0.6–1 kpc of the targets, as well as the southern bar end of NGC 3627. We complement this data set with publicly available images of lower excitation lines of HCN, HCO+, and CO and analyse the behaviour of a representative set of line ratios: HCN(3–2)/HCN(1–0), HCN(3–2)/HCO+(3–2), HCN(1–0)/CO(2–1), and HCN(3–2)/CO(2–1). Most of these ratios peak at the galaxy centres and decrease outwards. We compare the HCN and HCO+observations with a grid of one-phase, non-local thermodynamic equilibrium (non-LTE) radiative transfer models and find them compatible with models that predict subthermally excited and optically thick lines. We study the systematic variations of the line ratios across the targets as a function of the stellar surface density (Σstar), the intensity-weighted CO(2–1) (⟨ICO⟩), and the star formation rate surface density (ΣSFR). We find no apparent correlation with ΣSFR, but positive correlations with the other two parameters, which are stronger in the case of ⟨ICO⟩. The HCN/CO–⟨ICO⟩ relations show ≲0.3 dex galaxy-to-galaxy offsets, with HCN(3–2)/CO(2–1)–⟨ICO⟩ being ∼2 times steeper than HCN(1–0)/CO(2–1). In contrast, the HCN(3–2)/HCN(1–0)–⟨ICO⟩ relation exhibits a tighter alignment between galaxies. We conclude that the overall behaviour of the line ratios cannot be ascribed to variations in a single excitation parameter (e.g., density or temperature). 
    more » « less
  2. Abstract The spectral line energy distribution of carbon monoxide contains information about the physical conditions of the star-forming molecular hydrogen gas; however, the relation to local radiation field properties is poorly constrained. Using ∼1–2 kpc scale Atacama Large Millimeter Array observations of CO(3−2) and CO(4−3), we characterize the CO(4−3)/CO(3−2) line ratios of local analogues of main-sequence galaxies at z ∼ 1–2, drawn from the DYnamics of Newly Assembled Massive Objects (DYNAMO) sample. We measure CO(4−3)/CO(3−2) across the disk of each galaxy and find a median line ratio of R 43 = 0.54 − 0.15 + 0.16 for the sample. This is higher than literature estimates of local star-forming galaxies and is consistent with multiple lines of evidence that indicate DYNAMO galaxies, despite residing in the local universe, resemble main-sequence galaxies at z ∼ 1–2. Comparing with existing lower-resolution CO(1−0) observations, we find R 41 and R 31 values in the range ∼0.2–0.3 and ∼0.4–0.8, respectively. We combine our kiloparsec-scale resolved line ratio measurements with Hubble Space Telescope observations of H α to investigate the relation to the star formation rate surface density and compare this relation to expectations from models. We find increasing CO(4−3)/CO(3−2) with increasing star formation rate surface density; however, models overpredict the line ratios across the range of star formation rate surface densities we probe, in particular at the lower range. Finally, Stratospheric Observatory for Infrared Astronomy observations with the High-resolution Airborne Wideband Camera Plus and Field-Imaging Far-Infrared Line Spectrometer reveal low dust temperatures and no deficit of [C ii ] emission with respect to the total infrared luminosity. 
    more » « less
  3. Abstract Over the past decade, several millimeter interferometer programs have mapped the nearby star-forming galaxy M51 at a spatial resolution of ≤170 pc. This study combines observations from three major programs: the PdBI Arcsecond Whirlpool Survey, the SMA M51 large program, and the Surveying the Whirlpool at Arcseconds with NOEMA. The data set includes the (1–0) and (2–1) rotational transitions of12CO,13CO, and C18O isotopologues. The observations cover ther< 3 kpc region, including the center and part of the disk, thereby ensuring strong detections of the weaker13CO and C18O lines. All observations are convolved in this analysis to an angular resolution of 4″, corresponding to a physical scale of 170 pc. We investigate empirical line ratio relations and quantitatively evaluate molecular gas conditions such as temperature, density, and the CO-to-H2conversion factor (αCO). We employ two approaches to study the molecular gas conditions: (i) assuming local thermodynamic equilibrium (LTE) to analytically determine the CO column density andαCO, and (ii) using non-LTE modeling withRADEXto fit physical conditions to observed CO isotopologue intensities. We find that theαCOvalues in the center and along the inner spiral arm are ∼0.5 dex (LTE) and 0.1 dex (non-LTE) below the Milky Way inner disk value. The average non-LTEαCOis 2.4 ± 0.5Mpc−2(K km s−1)−1. While both methods show dispersion due to underlying assumptions, the scatter is larger for LTE-derived values. This study underscores the necessity for robust CO line modeling to accurately constrain the molecular interstellar medium’s physical and chemical conditions in nearby galaxies. 
    more » « less
  4. Carbon monoxide (CO) emission constitutes the most widely used tracer of the bulk molecular gas in the interstellar medium (ISM) in extragalactic studies. The CO-to-H 2 conversion factor, α 12 CO(1−0) , links the observed CO emission to the total molecular gas mass. However, no single prescription perfectly describes the variation of α 12 CO(1−0) across all environments within and across galaxies as a function of metallicity, molecular gas opacity, line excitation, and other factors. Using spectral line observations of CO and its isotopologues mapped across a nearby galaxy, we can constrain the molecular gas conditions and link them to a variation in α 12 CO(1−0) . Here, we present new, wide-field (10 × 10 arcmin 2 ) IRAM 30-m telescope 1 mm and 3 mm line observations of 12 CO, 13 CO, and C 18 O across the nearby, grand-design, spiral galaxy M101. From the CO isotopologue line ratio analysis alone, we find that selective nucleosynthesis and changes in the opacity are the main drivers of the variation in the line emission across the galaxy. In a further analysis step, we estimated α 12 CO(1−0) using different approaches, including (i) via the dust mass surface density derived from far-IR emission as an independent tracer of the total gas surface density and (ii) local thermal equilibrium (LTE) based measurements using the optically thin 13 CO(1–0) intensity. We find an average value of ⟨ α 12 CO(1 − 0) ⟩ = 4.4  ±  0.9  M ⊙  pc −2  (K km s −1 ) −1 across the disk of the galaxy, with a decrease by a factor of 10 toward the 2 kpc central region. In contrast, we find LTE-based α 12 CO(1−0) values are lower by a factor of 2–3 across the disk relative to the dust-based result. Accounting for α 12 CO(1−0) variations, we found significantly reduced molecular gas depletion time by a factor 10 in the galaxy’s center. In conclusion, our result suggests implications for commonly derived scaling relations, such as an underestimation of the slope of the Kennicutt Schmidt law, if α 12 CO(1−0) variations are not accounted for. 
    more » « less
  5. Abstract We report a Karl G. Jansky Very Large Array search for redshifted CO(1–0) emission from three Hi-absorption-selected galaxies atz≈ 2, identified earlier in their CO(3–2) or CO(4–3) emission. We detect CO(1–0) emission from DLA B1228-113 atz≈ 2.1933 and DLA J0918+1636 atz≈ 2.5848; these are the first detections of CO(1–0) emission in high-zHi-selected galaxies. We obtain high molecular gas masses,Mmol≈ 1011× (αCO/4.36)M, for the two objects with CO(1–0) detections, which are a factor of ≈1.5–2 lower than earlier estimates. We determine the excitation of the mid-JCO rotational levels relative to theJ= 1 level,rJ1, in Hi-selected galaxies for the first time, obtainingr31= 1.00 ± 0.20 andr41= 1.03 ± 0.23 for DLA J0918+1636, andr31= 0.86 ± 0.21 for DLA B1228-113. These values are consistent with thermal excitation of theJ= 3 andJ= 4 levels. The excitation of theJ= 3 level in the Hi-selected galaxies is similar to that seen in massive main-sequence and submillimeter galaxies atz≳2, but higher than that in main-sequence galaxies atz≈ 1.5; the higher excitation of the galaxies atz≳ 2 is likely to be due to their higher star formation rate (SFR) surface density. We use Hubble Space Telescope Wide Field Camera 3 imaging to detect the rest-frame near-ultraviolet (NUV) emission of DLA B1228-113, obtaining an NUV SFR of 4.44 ± 0.47Myr−1, significantly lower than that obtained from the total infrared luminosity, indicating significant dust extinction in thez≈ 2.1933 galaxy. 
    more » « less