A central goal in neuroscience is to understand how dynamic networks of neural activity produce effective representations of the world. Advances in the theory of graph measures raise the possibility of elucidating network topologies central to the construction of these representations. We leverage a result from the description of lollipop graphs to identify an iconic network topology in functional magnetic resonance imaging data and characterize changes to those networks during task performance and in populations diagnosed with psychiatric disorders. During task performance, we find that task-relevant subnetworks change topology, becoming more integrated by increasing connectivity throughout cortex. Analysis of resting-state connectivity in clinical populations shows a similar pattern of subnetwork topology changes; resting-scans becoming less default-like with more integrated sensory paths. The study of brain network topologies and their relationship to cognitive models of information processing raises new opportunities for understanding brain function and its disorders.
more »
« less
Evidence for elevated psychiatric distress, poor sleep, and quality of life concerns during the COVID-19 pandemic among U.S. young adults with suspected and reported psychiatric diagnoses
- Award ID(s):
- 2027553
- PAR ID:
- 10322587
- Date Published:
- Journal Name:
- Psychiatry Research
- Volume:
- 292
- Issue:
- C
- ISSN:
- 0165-1781
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Brain functional connectivity (FC) derived from functional magnetic resonance imaging has been serving as a potential ‘fingerprint’ for adults. However, cross-scan variation of FC can be substantial and carries biological information, especially during childhood. Here we performed a large-scale cross-sectional analysis on cross-scan FC stability and its associations with a diverse range of health measures in children. Functional network connectivity (FNC) was extracted via a hybrid independent component analysis framework on 9,071 participants and compared across four scans. We found that FNC can identify a given child from a large group with high accuracy (maximum >94%) and replicated the results across multiple scans. We then performed a linear mixed-effects model to investigate how cross-scan FNC stability was predictive of children’s behaviour. Although we could not find strong relationships between FNC stability and children’s behaviour, we observed significant but small associations between them (maximumr = 0.1070), with higher stability correlated with better cognitive performance, longer sleep duration and less psychotic expression. Via a multivariate analysis method, we captured larger effects between FNC stability and children’s cognitive performance (maximumr = 0.2932), which further proved the relevance of FNC stability to neurocognitive development. Overall, our findings show that a child’s connectivity profile is not only intrinsic but also exhibits reliable variability across scans, regardless of brain growth and development. Cross-scan connectivity stability may serve as a valuable neuroimaging feature to draw inferences on early cognitive and psychiatric behaviours in children.more » « less
An official website of the United States government

