skip to main content


Title: Autophagy-dependent TOR reactivation drives fungal growth in living host rice cells
Eukaryotic filamentous plant pathogens with biotrophic growth stages like the devastating hemibiotrophic rice blast fungus Magnaporthe oryzae grow for extended periods in living host plant cells without eliciting defense responses. M. oryzae elaborates invasive hyphae (IH) that grow in and between living rice cells while separated from host cytoplasm by plant-derived membrane interfaces. However, although critical to the plant infection process, the molecular mechanisms and metabolic strategies underpinning this intracellular growth phase are poorly understood. Eukaryotic cell growth depends on activated target-of-rapamycin (TOR) kinase signaling, which inhibits autophagy. Here, using live-cell imaging coupled with plate growth tests and RNAseq, proteomic, quantitative phosphoproteomics and metabolic approaches, we show how cycles of autophagy in IH modulate TOR reactivation via α-ketoglutarate to sustain biotrophic growth and maintain biotrophic interfacial membrane integrity in host rice cells. Deleting the M. oryzae serine-threonine protein kinase Rim15-encoding gene attenuated biotrophic growth, disrupted interfacial membrane integrity and abolished the in planta autophagic cycling we observe here for the first time in wild type. Δrim15 was also impaired for glutaminolysis and depleted for α-ketoglutarate. α-ketoglutarate treatment of Δrim15-infected leaf sheaths remediated Δrim15 biotrophic growth. In WT, α-ketoglutarate treatment suppressed autophagy. α-ketoglutarate signaling is amino acid prototrophy- and GS-GOGAT cycle-dependent. We conclude that, following initial IH elaboration, cycles of Rim15- dependent autophagic flux liberate α-ketoglutarate – via the GS-GOGAT cycle – as an amino acid-sufficiency signal to trigger TOR reactivation and promote fungal biotrophic growth in nutrient-restricted host rice cells.  more » « less
Award ID(s):
1758805
NSF-PAR ID:
10322605
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
bioRxiv
ISSN:
2692-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The blast fungusMagnaporthe oryzaeproduces invasive hyphae in living rice cells during early infection, separated from the host cytoplasm by plant-derived interfacial membranes. However, the mechanisms underpinning this intracellular biotrophic growth phase are poorly understood. Here, we show that theM. oryzaeserine/threonine protein kinase Rim15 promotes biotrophic growth by coordinating cycles of autophagy and glutaminolysis in invasive hyphae. Alongside inducing autophagy, Rim15 phosphorylates NAD-dependent glutamate dehydrogenase, resulting in increased levels of α-ketoglutarate that reactivate target-of-rapamycin (TOR) kinase signaling, which inhibits autophagy. DeletingRIM15attenuates invasive hyphal growth and triggers plant immunity; exogenous addition of α-ketoglutarate prevents these effects, while glucose addition only suppresses host defenses. Our results indicate that Rim15-dependent cycles of autophagic flux liberate α-ketoglutarate – via glutaminolysis – to reactivate TOR signaling and fuel biotrophic growth while conserving glucose for antioxidation-mediated host innate immunity suppression.

     
    more » « less
  2. Abstract

    The fungusMagnaporthe oryzaecauses blast, the most devastating disease of cultivated rice. After penetrating the leaf cuticle,M. oryzaegrows as a biotroph in intimate contact with living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic connections and requirements involved are largely unknown. Here, we characterized theM. oryzaenucleoside diphosphate kinase‐encoding geneNDK1and discovered it was essential for facilitating biotrophic growth by suppressing the host oxidative burst—the first line of plant defense. NDK enzymes reversibly transfer phosphate groups from tri‐ to diphosphate nucleosides. Correspondingly, intracellular nucleotide pools were perturbed inM. oryzaestrains lackingNDK1through targeted gene deletion, compared to WT. This affected metabolic homeostasis: TCA, purine and pyrimidine intermediates, and oxidized NADP+, accumulated in Δndk1. cAMP and glutathione were depleted. ROS accumulated in Δndk1hyphae. Functional appressoria developed on rice leaf sheath surfaces, but Δndk1invasive hyphal growth was restricted and redox homeostasis was perturbed, resulting in unsuppressed host oxidative bursts that triggered immunity. We conclude Ndk1 modulates intracellular nucleotide pools to maintain redox balance via metabolic homeostasis, thus quenching the host oxidative burst and suppressing rice innate immunity during biotrophy.

     
    more » « less
  3. Abstract

    During plant infection, fungi secrete effector proteins in coordination with distinct infection stages. Thus, the success of plant infection is determined by precise control of effector gene expression. We analysed thePWL2effector gene of the rice blast fungusMagnaporthe oryzaeto understand how effector genes are activated specifically during the early biotrophic stages of rice infection. Here, we used confocal live‐cell imaging ofM. oryzaetransformants with variousPWL2promoter fragments fused to sensitive green fluorescent protein reporter genes to determine the expression patterns ofPWL2at the cellular level, together with quantitative reverse transcription PCR analyses at the tissue level. We foundPWL2expression was coupled with sequential biotrophic invasion of rice cells.PWL2expression was induced in the appressorium upon penetration into a living rice cell but greatly declined in the highly branched hyphae when the first‐invaded rice cell was dead.PWL2expression then increased again as the hyphae penetrate into living adjacent cells. The expression ofPWL2required fungal penetration into living plant cells of either host rice or nonhost onion. Deletion and mutagenesis experiments further revealed that the tandem repeats in thePWL2promoter contain 12‐base pair sequences required for expression. We conclude thatPWL2expression is (a) activated by an unknown signal commonly present in living plant cells, (b) specific to biotrophic stages of fungal infection, and (c) requires 12‐base paircis‐regulatory sequences in the promoter.

     
    more » « less
  4. The target of rapamycin (TOR) kinase is an evolutionarily conserved hub of nutrient sensing and metabolic signaling. In plants, a functional connection of TOR activation with glucose availability was demonstrated, while it is yet unclear whether branched-chain amino acids (BCAAs) are a primary input of TOR signaling as they are in yeast and mammalian cells. Here, we report on the characterization of an Arabidopsis mutant over-accumulating BCAAs. Through chemical interventions targeting TOR and by examining mutants of BCAA biosynthesis and TOR signaling, we found that BCAA over-accumulation leads to up-regulation of TOR activity, which causes reorganization of the actin cytoskeleton and actin-associated endomembranes. Finally, we show that activation of TOR is concomitant with alteration of cell expansion, proliferation and specialized metabolism, leading to pleiotropic effects on plant growth and development. These results demonstrate that BCAAs contribute to plant TOR activation and reveal previously uncharted downstream subcellular processes of TOR signaling. 
    more » « less
  5. Abstract Eukaryotic cells have evolved membrane-bound organelles, including the endoplasmic reticulum (ER), Golgi, mitochondria, peroxisomes, chloroplasts (in plants and green algae) and lysosomes/vacuoles, for specialized functions. Organelle quality control and their proper interactions are crucial both for normal cell homeostasis and function and for environmental adaption. Dynamic turnover of organelles is tightly controlled, with autophagy playing an essential role. Autophagy is a programmed process for efficient clearing of unwanted or damaged macromolecules or organelles, transporting them to vacuoles for degradation and recycling and thereby enhancing plant environmental plasticity. The specific autophagic engulfment of organelles requires activation of a selective autophagy pathway, recognition of the organelle by a receptor, and selective incorporation of the organelle into autophagosomes. While some of the autophagy machinery and mechanisms for autophagic removal of organelles is conserved across eukaryotes, plants have also developed unique mechanisms and machinery for these pathways. In this review, we discuss recent progress in understanding autophagy regulation in plants, with a focus on autophagic degradation of membrane-bound organelles. We also raise some important outstanding questions to be addressed in the future. 
    more » « less