skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discovering Transforms: A Tutorial on Circulant Matrices, Circular Convolution, and the Discrete Fourier Transform
How could the Fourier and other transforms be naturally discovered if one didn't know how to postulate them? In the case of the Discrete Fourier Transform (DFT), we show how it arises naturally out of analysis of circulant matrices. In particular, the DFT can be derived as the change of basis that simultaneously diagonalizes all circulant matrices. In this way, the DFT arises naturally from a linear algebra question about a set of matrices. Rather than thinking of the DFT as a signal transform, it is more natural to think of it as a single change of basis that renders an entire set of mutually-commuting matrices into simple, diagonal forms. The DFT can then be ``discovered'' by solving the eigenvalue/eigenvector problem for a special element in that set. A brief outline is given of how this line of thinking can be generalized to families of linear operators, leading to the discovery of the other common Fourier-type transforms, as well as its connections with group representations theory.  more » « less
Award ID(s):
1932777 1763064
PAR ID:
10322687
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fast linear transforms are ubiquitous in machine learning, including the discrete Fourier transform, discrete cosine transform, and other structured transformations such as convolutions. All of these transforms can be represented by dense matrix-vector multiplication, yet each has a specialized and highly efficient (subquadratic) algorithm. We ask to what extent hand-crafting these algorithms and implementations is necessary, what structural prior they encode, and how much knowledge is required to automatically learn a fast algorithm for a provided structured transform. Motivated by a characterization of fast matrix-vector multiplication as products of sparse matrices, we introduce a parameterization of divide-and-conquer methods that is capable of representing a large class of transforms. This generic formulation can automatically learn an efficient algorithm for many important transforms; for example, it recovers the O(N logN) Cooley-Tukey FFT algorithm to machine precision, for dimensions N up to 1024. Furthermore, our method can be incorporated as a lightweight replacement of generic matrices in machine learning pipelines to learn efficient and compressible transformations. On a standard task of compressing a single hidden-layer network, our method exceeds the classification accuracy of unconstrained matrices on CIFAR-10 by 3.9 points—the first time a structured approach has done so—with 4X faster inference speed and 40X fewer parameters. 
    more » « less
  2. An efficient algorithm for the Lp -norm joint inversion of gravity and magnetic data using the cross-gradient constraint is presented. The presented framework incorporates stabilizers that use Lp -norms ( 0≤p≤2 ) of the model parameters, and/or the gradient of the model parameters. The formulation is developed from standard approaches for independent inversion of single data sets, and, thus, also facilitates the inclusion of necessary model and data weighting matrices, for example, depth weighting and hard constraint matrices. Using the block Toeplitz Toeplitz block structure of the underlying sensitivity matrices for gravity and magnetic models, when data are obtained on a uniform grid, the blocks for each layer of the depth are embedded in block circulant circulant block matrices. Then, all operations with these matrices are implemented efficiently using 2-D fast Fourier transforms, with a significant reduction in storage requirements. The nonlinear global objective function is minimized iteratively by imposing stationarity on the linear equation that results from applying linearization of the objective function about a starting model. To numerically solve the resulting linear system, at each iteration, the conjugate gradient algorithm is used. This is improved for large scale problems by the introduction of an algorithm in which updates for the magnetic and gravity parameter models are alternated at each iteration, further reducing total computational cost and storage requirements. Numerical results using a complicated 3-D synthetic model and real data sets obtained over the Galinge iron-ore deposit in the Qinghai province, north-west (NW) of China, demonstrate the efficiency of the presented algorithm. 
    more » « less
  3. A direct solver is introduced for solving overdetermined linear systems involving nonuniform discrete Fourier transform matrices. Such matrices can be transformed into a Cauchy-like form that has hierarchical low rank structure. The rank structure of this matrix is explained, and it is shown that the ranks of the relevant submatrices grow only logarithmically with the number of columns of the matrix. A fast rank-structured hierarchical approximation method based on this analysis is developed, along with a hierarchical least-squares solver for these and related systems. This result is a direct method for inverting nonuniform discrete transforms with a complexity that is usually nearly linear with respect to the degrees of freedom in the problem. This solver is benchmarked against various iterative and direct solvers in the setting of inverting the one-dimensional type-II (or forward) transform, for a range of condition numbers and problem sizes (up to 4 × 10 by 2 × 10 ). These experiments demonstrate that this method is especially useful for large problems with multiple right-hand sides. 
    more » « less
  4. We develop effective approximation methods for unitary matrices. In our formulation, a unitary matrix is represented as a product of rotations in two-dimensional subspaces, so-called Givens rotations. Instead of the quadratic dimension dependence when applying a dense matrix, applying such an approximation scales with the number factors, each of which can be implemented efficiently. Consequently, in settings where an approximation is once computed and then applied many times, such an effective representation becomes advantageous. Although efficient Givens factorizations are not possible for generic unitary operators, we show that minimizing a sparsity-inducing objective with a coordinate descent algorithm on the unitary group yields good factorizations for structured matrices. Canonical applications of such a setup are orthogonal basis transforms. We demonstrate that our methods improve the approximate representation of the graph Fourier transform, the matrix obtained when diagonalizing a graph Laplacian. 
    more » « less
  5. We develop effective approximation methods for unitary matrices. In our formulation, a unitary matrix is represented as a product of rotations in two-dimensional subspaces, so-called Givens rotations. Instead of the quadratic dimension dependence when applying a dense matrix, applying such an approximation scales with the number factors, each of which can be implemented efficiently. Consequently, in settings where an approximation is once computed and then applied many times, such an effective representation becomes advantageous. Although efficient Givens factorizations are not possible for generic unitary operators, we show that minimizing a sparsity-inducing objective with a coordinate descent algorithm on the unitary group yields good factorizations for structured matrices. Canonical applications of such a setup are orthogonal basis transforms. We demonstrate that our methods improve the approximate representation of the graph Fourier transform, the matrix obtained when diagonalizing a graph Laplacian. 
    more » « less