skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PrivSyn: Differentially Private Data Synthesis
In differential privacy (DP), a challenging problem is to generate synthetic datasets that efficiently capture the useful information in the private data. The synthetic dataset enables any task to be done without privacy concern and modification to existing algorithms. In this paper, we present PrivSyn, the first automatic synthetic data generation method that can handle general tabular datasets (with 100 attributes and domain size > 2500). PrivSyn is composed of a new method to automatically and privately identify correlations in the data, and a novel method to generate sample data from a dense graphic model. We extensively evaluate different methods on multiple datasets to demonstrate the performance of our method.  more » « less
Award ID(s):
1931443
PAR ID:
10322940
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Bailey, Michael; Greenstadt, Rachel
Date Published:
Journal Name:
Proceedings of the 30th USENIX Security Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Publishing trajectory data (individual’s movement information) is very useful, but it also raises privacy concerns. To handle the privacy concern, in this paper, we apply differential privacy, the standard technique for data privacy, together with Markov chain model, to generate synthetic trajectories. We notice that existing studies all use Markov chain model and thus propose a framework to analyze the usage of the Markov chain model in this problem. Based on the analysis, we come up with an effective algorithm PrivTrace that uses the first-order and second-order Markov model adaptively. We evaluate PrivTrace and existing methods on synthetic and real-world datasets to demonstrate the superiority of our method. 
    more » « less
  2. Text data has become extremely valuable due to the emergence of machine learning algorithms that learn from it. A lot of high-quality text data generated in the real world is private and therefore cannot be shared or used freely due to privacy concerns. Generating synthetic replicas of private text data with a formal privacy guarantee, i.e., differential privacy (DP), offers a promising and scalable solution. However, existing methods necessitate DP finetuning of large language models (LLMs) on private data to generate DP synthetic data. This approach is not viable for proprietary LLMs (e.g., GPT-3.5) and also demands considerable computational resources for open-source LLMs. Lin et al. (2024) recently introduced the Private Evolution (PE) algorithm to generate DP synthetic images with only API access to diffusion models. In this work, we propose an augmented PE algorithm, named AUGPE, that applies to the complex setting of text. We use API access to an LLM and generate DP synthetic text without any model training. We conduct comprehensive experiments on three benchmark datasets. Our results demonstrate that AUGPE produces DP synthetic text that yields competitive utility with the SOTA DP finetuning baselines. This underscores the feasibility of relying solely on API access of LLMs to produce high-quality DP synthetic texts, thereby facilitating more accessible routes to privacy-preserving LLM applications. Our code and data are available at https://github.com/AI-secure/aug-pe. 
    more » « less
  3. Security monitoring is crucial for maintaining a strong IT infrastructure by protecting against emerging threats, identifying vulnerabilities, and detecting potential points of failure. It involves deploying advanced tools to continuously monitor networks, systems, and configurations. However, organizations face challenges in adapting modern techniques like Machine Learning (ML) due to privacy and security risks associated with sharing internal data. Compliance with regulations like GDPR further complicates data sharing. To promote external knowledge sharing, a secure and privacy-preserving method for organizations to share data is necessary. Privacy-preserving data generation involves creating new data that maintains privacy while preserving key characteristics and properties of the original data so that it is still useful in creating downstream models of attacks. Generative models, such as Generative Adversarial Networks (GAN), have been proposed as a solution for privacy preserving synthetic data generation. However, standard GANs are limited in their capabilities to generate realistic system data. System data have inherent constraints, e.g., the list of legitimate I.P. addresses and port numbers are limited, and protocols dictate a valid sequence of network events. Standard generative models do not account for such constraints and do not utilize domain knowledge in their generation process. Additionally, they are limited by the attribute values present in the training data. This poses a major privacy risk, as sensitive discrete attribute values are repeated by GANs. To address these limitations, we propose a novel model for Knowledge Infused Privacy Preserving Data Generation. A privacy preserving Generative Adversarial Network (GAN) is trained on system data for generating synthetic datasets that can replace original data for downstream tasks while protecting sensitive data. Knowledge from domain-specific knowledge graphs is used to guide the data generation process, check for the validity of generated values, and enrich the dataset by diversifying the values of attributes. We specifically demonstrate this model by synthesizing network data captured by the network capture tool, Wireshark. We establish that the synthetic dataset holds up to the constraints of the network-specific datasets and can replace the original dataset in downstream tasks. 
    more » « less
  4. Big Data empowers the farming community with the information needed to optimize resource usage, increase productivity, and enhance the sustainability of agricultural practices. The use of Big Data in farming requires the collection and analysis of data from various sources such as sensors, satellites, and farmer surveys. While Big Data can provide the farming community with valuable insights and improve efficiency, there is significant concern regarding the security of this data as well as the privacy of the participants. Privacy regulations, such as the European Union’s General Data Protection Regulation (GDPR), the EU Code of Conduct on agricultural data sharing by contractual agreement, and the proposed EU AI law, have been created to address the issue of data privacy and provide specific guidelines on when and how data can be shared between organizations. To make confidential agricultural data widely available for Big Data analysis without violating the privacy of the data subjects, we consider privacy-preserving methods of data sharing in agriculture. Synthetic data that retains the statistical properties of the original data but does not include actual individuals’ information provides a suitable alternative to sharing sensitive datasets. Deep learning-based synthetic data generation has been proposed for privacy-preserving data sharing. However, there is a lack of compliance with documented data privacy policies in such privacy-preserving efforts. In this study, we propose a novel framework for enforcing privacy policy rules in privacy-preserving data generation algorithms. We explore several available agricultural codes of conduct, extract knowledge related to the privacy constraints in data, and use the extracted knowledge to define privacy bounds in a privacy-preserving generative model. We use our framework to generate synthetic agricultural data and present experimental results that demonstrate the utility of the synthetic dataset in downstream tasks. We also show that our framework can evade potential threats, such as re-identification and linkage issues, and secure data based on applicable regulatory policy rules. 
    more » « less
  5. Differential privacy (DP) data synthesizers are increasingly proposed to afford public release of sensitive information, offering theoretical guarantees for privacy (and, in some cases, utility), but limited empirical evidence of utility in practical settings. Utility is typically measured as the error on representative proxy tasks, such as descriptive statistics, multivariate correlations, the accuracy of trained classifiers, or performance over a query workload. The ability for these results to generalize to practitioners' experience has been questioned in a number of settings, including the U.S. Census. In this paper, we propose an evaluation methodology for synthetic data that avoids assumptions about the representativeness of proxy tasks, instead measuring the likelihood that published conclusions would change had the authors used synthetic data, a condition we call epistemic parity. Our methodology consists of reproducing empirical conclusions of peer-reviewed papers on real, publicly available data, then re-running these experiments a second time on DP synthetic data and comparing the results. We instantiate our methodology over a benchmark of recent peer-reviewed papers that analyze public datasets in the ICPSR social science repository. We model quantitative claims computationally to automate the experimental workflow, and model qualitative claims by reproducing visualizations and comparing the results manually. We then generate DP synthetic datasets using multiple state-of-the-art mechanisms, and estimate the likelihood that these conclusions will hold. We find that, for reasonable privacy regimes, state-of-the-art DP synthesizers are able to achieve high epistemic parity for several papers in our benchmark. However, some papers, and particularly some specific findings, are difficult to reproduce for any of the synthesizers. Given these results, we advocate for a new class of mechanisms that can reorder the priorities for DP data synthesis: favor stronger guarantees for utility (as measured by epistemic parity) and offer privacy protection with a focus on application-specific threat models and risk-assessment. 
    more » « less