skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Are Palmer’s Elm-Leaf Goldenrod and the Smooth Elm-Leaf Goldenrod Real? The Angiosperms353 Kit Provides Within-Species Signal in Solidago ulmifolia s. l.
Abstract— The genus Solidago represents a taxonomically challenging group due to its sheer number of species, putative hybridization, polyploidy, and shallow genetic divergence among species. Here we use a dataset obtained exclusively from herbarium specimens to evaluate the status of Solidago ulmifolia var. palmeri , a morphologically subtle taxon potentially confined to Alabama, Arkansas, Mississippi, and Missouri. A multivariate analysis of both discrete and continuous morphological data revealed no clear distinction between S. ulmifolia var. palmeri and Solidago ulmifolia var. ulmifolia . Solidago ulmifolia var. palmeri ’s status was also assessed with a phylogenomic and SNP clustering analysis of data generated with the “Angiosperms353” probe kit. Neither analysis supported Solidago ulmifolia var. palmeri as a distinct taxon, and we suggest that this name should be discarded. The status of Solidago delicatula (formerly known as Solidago ulmifolia var. microphylla ) was also assessed. Both morphological and phylogenetic analyses supported the species status of S. delicatula and we suggest maintaining this species at its current rank. These results highlight the utility of the Angiosperms353 probe kit, both with herbarium tissue and at lower taxonomic levels. Indeed, this is the first study to utilize this kit to identify genetic groups within a species.  more » « less
Award ID(s):
1920858
PAR ID:
10323017
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Systematic Botany
Volume:
46
Issue:
4
ISSN:
0363-6445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    PREMISE The successful application of universal targeted sequencing markers, such as those developed for the Angiosperms353 probe set, within populations could reduce or eliminate the need for specific marker development, while retaining the benefits of full-gene sequences in population-level analyses. However, whether the Angiosperms353 markers provide sufficient variation within species to calculate demographic parameters is untested. METHODS Using herbarium specimens from a 50-year-old floristic survey in Texas, we sequenced 95 samples from 24 species using the Angiosperms353 probe set. Our data workflow calls variants within species and prepares data for population genetic analysis using standard metrics. In our case study, gene recovery was affected by genomic library concentration only at low concentrations and displayed limited phylogenetic bias. RESULTS We identified over 1000 segregating variants with zero missing data for 92% of species and demonstrate that Angiosperms353 markers contain sufficient variation to estimate pairwise nucleotide diversity (π)—typically between 0.002 and 0.010, with most variation found in flanking non-coding regions. In a subset of variants that were filtered to reduce linkage, we uncovered high heterozygosity in many species, suggesting that denser sampling within species should permit estimation of gene flow and population dynamics. DISCUSSION Angiosperms353 should benefit conservation genetic studies by providing universal repeatable markers, low missing data, and haplotype information, while permitting inclusion of decades-old herbarium specimens. 
    more » « less
  2. PremiseDivergence depends on the strength of selection and frequency of gene flow between taxa, while reproductive isolation relies on mating barriers and geographic distance. Less is known about how these processes interact at early stages of speciation. Here, we compared population‐level differentiation in floral phenotype and genetic sequence variation among recently divergedCastillejato explore patterns of diversification under different scenarios of reproductive isolation. MethodsUsing target enrichment enabled by the Angiosperms353 probe set, we assessed genetic distance among 50 populations of fourCastillejaspecies. We investigated whether patterns of genetic divergence are explained by floral trait variation or geographic distance in two focal groups: the widespreadC. sessilifloraand the more restrictedC. purpureaspecies complex. ResultsWe document thatC. sessilifloraand theC. purpureacomplex are characterized by high diversity in floral color across varying geographic scales. Despite phenotypic divergence, groups were not well supported in phylogenetic analyses, and little genetic differentiation was found across targeted Angiosperms353 loci. Nonetheless, a principal coordinate analysis of single nucleotide polymorphisms revealed differentiation withinC. sessilifloraacross floral morphs and geography and less differentiation among species of theC. purpureacomplex. ConclusionsPatterns of genetic distance inC. sessiliflorasuggest species cohesion maintained over long distances despite variation in floral traits. In theC. purpureacomplex, divergence in floral color across narrow geographic clines may be driven by recent selection on floral color. These contrasting patterns of floral and genetic differentiation reveal that divergence can arise via multiple eco‐evolutionary paths. 
    more » « less
  3. PremiseThe ability to sequence genome‐scale data from herbarium specimens would allow for the economical development of data sets with broad taxonomic and geographic sampling that would otherwise not be possible. Here, we evaluate the utility of a basic double‐digest restriction site–associatedDNAsequencing (ddRADseq) protocol usingDNAs from four genera extracted from both silica‐dried and herbarium tissue. MethodsDNAs fromDraba,Boechera,Solidago, andIlexwere processed with a ddRADseq protocol. The effects ofDNAdegradation, taxon, and specimen age were assessed. ResultsAlthough taxon, preservation method, and specimen age affected data recovery, large phylogenetically informative data sets were obtained from the majority of samples. DiscussionThese results suggest that herbarium samples can be incorporated into ddRADseq project designs, and that specimen age can be used as a rapid on‐site guide for sample choice. The detailed protocol we provide will allow users to pursue herbarium‐based ddRADseq projects that minimize the expenses associated with fieldwork and sample evaluation. 
    more » « less
  4. PremisePhylogenetic studies in the Compositae are challenging due to the sheer size of the family and the challenges they pose for molecular tools, ranging from the genomic impact of polyploid events to their very conserved plastid genomes. The search for better molecular tools for phylogenetic studies led to the development of the family‐specific Compositae1061 probe set, as well as the universal Angiosperms353 probe set designed for all flowering plants. In this study, we evaluate the extent to which data generated using the family‐specific kit and those obtained with the universal kit can be merged for downstream analyses. MethodsWe used comparative methods to verify the presence of shared loci between probe sets. Using two sets of eight samples sequenced with Compositae1061 and Angiosperms353, we ran phylogenetic analyses with and without loci flagged as paralogs, a gene tree discordance analysis, and a complementary phylogenetic analysis mixing samples from both sample sets. ResultsOur results show that the Compositae1061 kit provides an average of 721 loci, with 9–46% of them presenting paralogs, while the Angiosperms353 set yields an average of 287 loci, which are less affected by paralogy. Analyses mixing samples from both sets showed that the presence of 30 shared loci in the probe sets allows the combination of data generated in different ways. DiscussionCombining data generated using different probe sets opens up the possibility of collaborative efforts and shared data within the synantherological community. 
    more » « less
  5. Abstract Speciation processes in plants can be difficult to evaluate, but are essential to understanding evolutionary processes that lead to diversification. Determining the juncture at which a genetically and/or morphologically divergent population can be reliably considered a separate species is often challenging. This is particularly so with respect to recent divergences amongst closely related taxa wherein factors such as incomplete lineage sorting may yield confounding results. Taxa in theCymopterus terebinthinus(Apiaceae) species complex have long puzzled botanists. Named entities in this group display similar, yet apparently distinct morphologies that have been classified as varieties under various generic names highlighting long‐standing nomenclatural instability. Previous phylogenetic studies have challenged the monophyly of this complex. This study aims to clarify taxonomic boundaries and infer evolutionary relationships among the fourC. terebinthinusvarieties andC. petraeusby applying phylogenetic inference and incorporating ecological, morphological, and geographical evidence. We sampled from populations of all varieties ofC. terebinthinusandC. petraeusfor target capture with the Angiosperms353 bait kit. We performed phylogenetic analyses with maximum likelihood (RAxML and IQ‐TREE) and coalescent‐based phylogenetic analysis (ASTRAL). We also conducted principal component analysis of soil samples and climatic variables. We find thatC. terebinthinusand its varietal infrataxa comprise a monophyletic clade that includesC. petraeus. Clade groupings correspond to previous taxonomic assignments and morphology. Clades are often closely associated with geographical variables and at times correlated with ecological variables. Exceptions to this are here attributed to various evolutionary factors that often confound other phylogenetic analyses such as incomplete lineage sorting, introgression, and paralogous loci. Our findings suggests that geographical factors might play a major role in genetic and morphological differentiation in this complex. Despite finding well‐supported clades that correspond to defined morphological characters; further sampling amongC. petraeuspopulations is required to make taxonomic decisions. 
    more » « less