skip to main content


Title: Deep Set Auto Encoders for Anomaly Detection in Particle Physics
There is an increased interest in model agnostic search strategies for physics beyond the standard model at the Large Hadron Collider.We introduce a Deep Set Variational Autoencoder and present results on the Dark Machines Anomaly Score Challenge.We find that the method attains the best anomaly detection ability when there is no decoding step for the network, and the anomaly score is based solely on the representation within the encoded latent space.This method was one of the top-performing models in the Dark Machines Challenge, both for the open data sets as well as the blinded data sets.  more » « less
Award ID(s):
2019786
NSF-PAR ID:
10323040
Author(s) / Creator(s):
Date Published:
Journal Name:
SciPost Physics
Volume:
12
Issue:
1
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe the outcome of a data challenge conducted as part of the Dark Machines (https://www.darkmachines.org) initiative and the Les Houches 2019 workshop on Physics at TeV colliders. The challenged aims to detect signals of new physics at the Large Hadron Collider (LHC) using unsupervised machine learning algorithms. First, we propose how an anomaly score could be implemented to define model-independent signal regions in LHC searches. We define and describe a large benchmark dataset, consisting of >1 billion simulated LHC events corresponding to 10\, fb^{-1} 10 f b − 1 of proton-proton collisions at a center-of-mass energy of 13 TeV. We then review a wide range of anomaly detection and density estimation algorithms, developed in the context of the data challenge, and we measure their performance in a set of realistic analysis environments. We draw a number of useful conclusions that will aid the development of unsupervised new physics searches during the third run of the LHC, and provide our benchmark dataset for future studies at https://www.phenoMLdata.org. Code to reproduce the analysis is provided at https://github.com/bostdiek/DarkMachines-UnsupervisedChallenge. 
    more » « less
  2. null (Ed.)
    Propensity score methods account for selection bias in observational studies. However, the consistency of the propensity score estimators strongly depends on a correct specification of the propensity score model. Logistic regression and, with increasing popularity, machine learning tools are used to estimate propensity scores. We introduce a stacked generalization ensemble learning approach to improve propensity score estimation by fitting a meta learner on the predictions of a suitable set of diverse base learners. We perform a comprehensive Monte Carlo simulation study, implementing a broad range of scenarios that mimic characteristics of typical data sets in educational studies. The population average treatment effect is estimated using the propensity score in Inverse Probability of Treatment Weighting. Our proposed stacked ensembles, especially using gradient boosting machines as a meta learner trained on a set of 12 base learner predictions, led to superior reduction of bias compared to the current state-of-the-art in propensity score estimation. Further, our simulations imply that commonly used balance measures (averaged standardized absolute mean differences) might be misleading as propensity score model selection criteria. We apply our proposed model - which we call GBM-Stack - to assess the population average treatment effect of a Supplemental Instruction (SI) program in an introductory psychology (PSY 101) course at San Diego State University. Our analysis provides evidence that moving the whole population to SI attendance would on average lead to 1.69 times higher odds to pass the PSY 101 class compared to not offering SI, with a 95% bootstrap confidence interval of (1.31, 2.20). 
    more » « less
  3. null (Ed.)
    In this paper, a deep neural network hidden Markov model (DNN-HMM) is proposed to detect pipeline leakage location. A long pipeline is divided into several sections and the leakage occurs in different section that is defined as different state of hidden Markov model (HMM). The hybrid HMM, i.e., DNN-HMM, consists of a deep neural network (DNN) with multiple layers to exploit the non-linear data. The DNN is initialized by using a deep belief network (DBN). The DBN is a pre-trained model built by stacking top-down restricted Boltzmann machines (RBM) that compute the emission probabilities for the HMM instead of Gaussian mixture model (GMM). Two comparative studies based on different numbers of states using Gaussian mixture model-hidden Markov model (GMM-HMM) and DNN-HMM are performed. The accuracy of the testing performance between detected state sequence and actual state sequence is measured by micro F1 score. The micro F1 score approaches 0.94 for GMM-HMM method and it is close to 0.95 for DNN-HMM method when the pipeline is divided into three sections. In the experiment that divides the pipeline as five sections, the micro F1 score for GMM-HMM is 0.69, while it approaches 0.96 with DNN-HMM method. The results demonstrate that the DNN-HMM can learn a better model of non-linear data and achieve better performance compared to GMM-HMM method. 
    more » « less
  4. null (Ed.)
    Overall, this document will serve as an analysis of the combination between machine learning principles and computer network analysis in their ability to detect a network anomaly, such as a network attack. The research provided in this document will highlight the key elements of network analysis and provide an overview of common network analysis techniques. Specifically, this document will highlight a study conducted by the University of Luxembourg and an attempt to recreate the study with a slightly different list of parameters against a different dataset for network anomaly detection using NetFlow data. Alongside network analysis, is the emerging field of machine learning. This document will be investigating common machine learning techniques and implement a support vector machine algorithm to detect anomaly and intrusion within the network. MatLab was an utilized machine learning tool for identifying how to coordinate network analysis data with Support Vector Machines. The resulting graphs represent tests conducted using Support vector machines in a method similar to that of the University of Luxembourg. The difference between the tests is within the metrics used for anomaly detection. The University of Luxembourg utilized the IP addresses and the volume of traffic of a specific NetFlow dataset. The resulting graphs utilize a metric based on the duration of transmitted bytes, and the ratio of the incoming and outgoing bytes during the transmission. The algorithm created and defined metrics proved to not be as efficient as planned against the NetFlow dataset. The use of the conducted tests did not provide a clear classification of an anomaly. However, many other factors contributing to network anomalies were highlighted. 
    more » « less
  5. Abstract

    Detection of deception attacks is pivotal to ensure the safe and reliable operation of cyber-physical systems (CPS). Detection of such attacks needs to consider time-series sequences and is very challenging especially for autonomous vehicles that rely on high-dimensional observations from camera sensors. The paper presents an approach to detect deception attacks in real-time utilizing sensor observations, with a special focus on high-dimensional observations. The approach is based on inductive conformal anomaly detection (ICAD) and utilizes a novel generative model which consists of a variational autoencoder (VAE) and a recurrent neural network (RNN) that is used to learn both spatial and temporal features of the normal dynamic behavior of the system. The model can be used to predict the observations for multiple time steps, and the predictions are then compared with actual observations to efficiently quantify the nonconformity of a sequence under attack relative to the expected normal behavior, thereby enabling real-time detection of attacks using high-dimensional sequential data. We evaluate the approach empirically using two simulation case studies of an advanced emergency braking system and an autonomous car racing example, as well as a real-world secure water treatment dataset. The experiments show that the proposed method outperforms other detection methods, and in most experiments, both false positive and false negative rates are less than 10%. Furthermore, execution times measured on both powerful cloud machines and embedded devices are relatively short, thereby enabling real-time detection.

     
    more » « less