skip to main content

Title: Sex differences in human mate preferences vary across sex ratios
A wide range of literature connects sex ratio and mating behaviours in non-human animals. However, research examining sex ratio and human mating is limited in scope. Prior work has examined the relationship between sex ratio and desire for short-term, uncommitted mating as well as outcomes such as marriage and divorce rates. Less empirical attention has been directed towards the relationship between sex ratio and mate preferences, despite the importance of mate preferences in the human mating literature. To address this gap, we examined sex ratio's relationship to the variation in preferences for attractiveness, resources, kindness, intelligence and health in a long-term mate across 45 countries ( n = 14 487). We predicted that mate preferences would vary according to relative power of choice on the mating market, with increased power derived from having relatively few competitors and numerous potential mates. We found that each sex tended to report more demanding preferences for attractiveness and resources where the opposite sex was abundant, compared to where the opposite sex was scarce. This pattern dovetails with those found for mating strategies in humans and mate preferences across species, highlighting the importance of sex ratio for understanding variation in human mate preferences.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1845586
Publication Date:
NSF-PAR ID:
10323051
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1955
ISSN:
0962-8452
Sponsoring Org:
National Science Foundation
More Like this
  1. Considerable research has examined human mate preferences across cultures, finding universal sex differences in preferences for attractiveness and resources as well as sources of systematic cultural variation. Two competing perspectives—an evolutionary psychological perspective and a biosocial role perspective—offer alternative explanations for these findings. However, the original data on which each perspective relies are decades old, and the literature is fraught with conflicting methods, analyses, results, and conclusions. Using a new 45-country sample ( N = 14,399), we attempted to replicate classic studies and test both the evolutionary and biosocial role perspectives. Support for universal sex differences in preferences remains robust: Men, more than women, prefer attractive, young mates, and women, more than men, prefer older mates with financial prospects. Cross-culturally, both sexes have mates closer to their own ages as gender equality increases. Beyond age of partner, neither pathogen prevalence nor gender equality robustly predicted sex differences or preferences across countries.
  2. BACKGROUND Charles Darwin’s  Descent of Man, and Selection in Relation to Sex  tackled the two main controversies arising from the Origin of Species:  the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on howmore »traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE« less
  3. Abstract

    Ecological processes driving female-skewed adult sex ratios (ASRs; males:females) in populations with polygynous mating systems have been addressed theoretically, but empirical support is scarce. The theoretical framework of the female substitution hypothesis (FSH) asserts that a female-skewed ASR at carrying capacity reflects an overall fitness benefit for females and for males competitive in acquiring access to reproductive females. The FSH predicts that as population abundance increases females should acquire forage more efficiently than males, thereby leading to passive displacement of males. The result is declining ASR associated with differential habitat use by both sexes as food resources are depleted by female scramble competition. We characterized the temporal variation in ASR in a Roosevelt elk population inhabiting the Redwood National and State Parks, California, across 24 years, and determined which of two possible ecological mechanisms was the driver of a declining ASR. The first mechanism explored was that increasing female abundance associated with declining forage in the study area led to the passive displacement of males into the study periphery over time. The second mechanism explored was that a declining ASR was precipitated by a lack of males within the study area and the study periphery. Systematic population surveys frommore »a vehicle were done to estimate abundance and ASR as well as assess male abundance in the study periphery. Forage biomass was estimated in quarter-m2 plots randomly placed in meadows inhabited by female elk. Our multiple regression analysis revealed an inverse relationship between abundance and ASR indicating density dependence. We found numerous males in the study periphery when females were abundant. Our least squares models indicated declining food resources across years when female abundance increased. Our results showed that the first, and not the second, ecological mechanism examined was responsible for a female-skewed ASR. Our findings provide empirical support for the theoretical framework of the FSH in a nonmigratory population protected from hunting.

    « less
  4. Abstract To produce viable offspring, organisms may assess mates via criteria that include traits, such as sex, species, age, reproductive status, population identity and individual quality. Copepods are small, ubiquitous crustaceans that live in freshwater and marine systems around the world whose patterns of mate choice have been long studied in numerous species. Herein, we synthesized decades of experiments describing sexual selection in copepods to assess the importance of mating criteria. We used formal, meta-analytical techniques and mixed modeling to quantify the likelihood of non-random mating associated with mating criteria. In our synthesis of the scientific literature, we found that copepods use several criteria when assessing mates and that these criteria are associated with different likelihood estimates. We report the strongest likelihood of non-random mating when copepods assess the reproductive status of females or when copepods select between conspecific vs. heterospecific mates. We found weak likelihood of non-random mating in studies that provide mates from different populations or that manipulate operational sex ratio. Studies that directly test assessment of individual quality are sparse in copepods when compared to equivalent studies in vertebrates, and we encourage future researchers to explore whether copepods use individual characteristics as key mating criteria.
  5. Female mammals employ reproductive strategies (e.g., internal gestation) that result in power asymmetries specific to intersexual dyads. Because the number of eggs available for fertilization at any given time for most mammals is quite limited, having a fertilizable egg is potentially an important source of economic power for females. Control over mating opportunities is a source of intersexual leverage for female Verreaux’s sifaka ( Propithecus verreauxi ). We examined economic factors thought to influence the value of mating opportunities, and, thus, the extent of female leverage: kinship and market effects. Using a longitudinal dataset of agonistic interactions collected during focal animal sampling of all adult individuals in 10 social groups from 2008 to 2019, we tested the effects of relatedness, female parity, reproductive season, and adult sex ratio (population and group) on (1) the direction of submissive signaling and (2) which sex won a contested resource. While 96% of the acts of submission were directed from males toward females, females only won a third of their conflicts with males. Thus, our study has implications for evolutionary explanations of female-biased power. If female power evolved due to their greater need for food and other resources, then intersexual conflicts would be expectedmore »to result in males more consistently relinquishing control of resources. As expected, males were more likely to chatter submissively toward successful mothers, during the mating season, and when the sex ratio was male-biased. Although females generally had less power to win a conflict when their fertilizable egg was less valuable (when they were nulliparous or unsuccessful mothers or when interacting with male kin) and with an increasing female-bias in the sex ratio, this ability to win additionally was influenced by which sex initiated the conflict. Our study demonstrates that female leverage can be influenced by the supply and demand for mating opportunities, but evoking submission does not translate into winning a resource. Indeed, intersexual power is dynamic, contextual, and dependent on the individuals in the dyad.« less