skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of Antimicrobial-Resistant Escherichia coli Isolates from Urban Raccoons and Domestic Dogs
ABSTRACT Wildlife can be exposed to antimicrobial-resistant bacteria (ARB) via multiple pathways. Spatial overlap with domestic animals is a prominent exposure pathway. However, most studies of wildlife-domestic animal interfaces have focused on livestock and little is known about the wildlife-companion animal interface. Here, we investigated the prevalence and phylogenetic relatedness of extended-spectrum cephalosporin-resistant (ESC-R) Escherichia coli from raccoons ( Procyon lotor ) and domestic dogs ( Canis lupus familiaris ) in the metropolitan area of Chicago, IL, USA. To assess the potential importance of spatial overlap with dogs, we explored whether raccoons sampled at public parks (i.e., parks where people and dogs could enter) differed in prevalence and phylogenetic relatedness of ESC-R E. coli to raccoons sampled at private parks (i.e., parks where people and dogs could not enter). Raccoons had a significantly higher prevalence of ESC-R E. coli (56.9%) than dogs (16.5%). However, the richness of ESC-R E. coli did not vary by host species. Further, core single-nucleotide polymorphism (SNP)-based phylogenetic analyses revealed that isolates did not cluster by host species, and in some cases displayed a high degree of similarity (i.e., differed by less than 20 core SNPs). Spatial overlap analyses revealed that ESC-R E. coli were more likely to be isolated from raccoons at public parks than raccoons at private parks, but only for parks located in suburban areas of Chicago, not urban areas. That said, ESC-R E. coli isolated from raccoons did not genetically cluster by park of origin. Our findings suggest that domestic dogs and urban/suburban raccoons can have a diverse range of ARB, some of which display a high degree of genetic relatedness (i.e., differ by less than 20 core SNPs). Given the differences in prevalence, domestic dogs are unlikely to be an important source of exposure for mesocarnivores in urbanized areas. IMPORTANCE Antimicrobial-resistant bacteria (ARB) have been detected in numerous wildlife species across the globe, which may have important implications for human and animal health. Wildlife can be exposed to ARB via numerous pathways, including via spatial overlap with domestic animals. However, the interface with domestic animals has mostly been explored for livestock and little is known about the interface between wild animals and companion animals. Our work suggests that urban and suburban wildlife can have similar ARB to local domestic dogs, but local dogs are unlikely to be a direct source of exposure for urban-adapted wildlife. This finding is important because it underscores the need to incorporate wildlife into antimicrobial resistance surveillance efforts, and to investigate whether certain urban wildlife species could act as additional epidemiological pathways of exposure for companion animals, and indirectly for humans.  more » « less
Award ID(s):
2030509 1701069
PAR ID:
10323117
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Elkins, Christopher A.
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
87
Issue:
15
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coyotes are ubiquitous on the North American landscape as a result of their recent expansion across the continent. They have been documented in the heart of some of the most urbanized cities, such as Chicago, Los Angeles, and New York City. Here, we explored the genomic composition of 16 coyotes in the New York metropolitan area to investigate genomic demography and admixture for urban-dwelling canids in Queens County, New York. We identified moderate-to-high estimates of relatedness among coyotes living in Queens (r = 0.0–0.5) and adjacent neighborhoods, suggestive of a relatively small population. Although we found low background levels of domestic-dog ancestry across most coyotes in our sample (5%), we identified a male suspected to be a first-generation coyote–dog hybrid with 46% dog ancestry, as well as his two putative backcrossed offspring that carried approximately 25% dog ancestry. The male coyote–dog hybrid and one backcrossed offspring each carried two transposable element insertions that are associated with human-directed hypersociability in dogs and gray wolves. An additional, unrelated coyote with little dog ancestry also carried two of these insertions. These genetic patterns suggest that gene flow from domestic dogs may become an increasingly important consideration as coyotes continue to inhabit metropolitan regions. 
    more » « less
  2. Elkins, Christopher A. (Ed.)
    ABSTRACT Low- and middle-income countries (LMICs) bear the largest mortality burden of antibiotic-resistant infections. Small-scale animal production and free-roaming domestic animals are common in many LMICs, yet data on zoonotic exchange of gut bacteria and antibiotic resistance genes (ARGs) in low-income communities are sparse. Differences between rural and urban communities with regard to population density, antibiotic use, and cohabitation with animals likely influence the frequency of transmission of gut bacterial communities and ARGs between humans and animals. Here, we determined the similarity in gut microbiomes, using 16S rRNA gene amplicon sequencing, and resistomes, using long-read metagenomics, between humans, chickens, and goats in a rural community compared to an urban community in Bangladesh. Gut microbiomes were more similar between humans and chickens in the rural (where cohabitation is more common) than the urban community, but there was no difference for humans and goats in the rural versus the urban community. Human and goat resistomes were more similar in the urban community, and ARG abundance was higher in urban animals than rural animals. We identified substantial overlap of ARG alleles in humans and animals in both settings. Humans and chickens had more overlapping ARG alleles than humans and goats. All fecal hosts from the urban community and rural humans carried ARGs on chromosomal contigs classified as potentially pathogenic bacteria, including Escherichia coli , Campylobacter jejuni , Clostridioides difficile , and Klebsiella pneumoniae . These findings provide insight into the breadth of ARGs circulating within human and animal populations in a rural compared to urban community in Bangladesh. IMPORTANCE While the development of antibiotic resistance in animal gut microbiomes and subsequent transmission to humans has been demonstrated in intensive farming environments and high-income countries, evidence of zoonotic exchange of antibiotic resistance in LMIC communities is lacking. This research provides genomic evidence of overlap of antibiotic resistance genes between humans and animals, especially in urban communities, and highlights chickens as important reservoirs of antibiotic resistance. Chicken and human gut microbiomes were more similar in rural Bangladesh, where cohabitation is more common. Incorporation of long-read metagenomics enabled characterization of bacterial hosts of resistance genes, which has not been possible in previous culture-independent studies using only short-read sequencing. These findings highlight the importance of developing strategies for combatting antibiotic resistance that account for chickens being reservoirs of ARGs in community environments, especially in urban areas. 
    more » « less
  3. null (Ed.)
    Anticoagulant rodenticides (ARs) deployed to control rodent pest populations can increase the risk of pathogen infection for some wildlife. However, it is unknown whether ARs also increase infection risk for target rodents, which are common hosts for zoonotic (animal-to-human transmitted) pathogens. In this study, we tested whether rats exposed to ARs were more likely to be infected with zoonotic pathogens, specifically Leptospira spp. or Escherichia coli , after controlling for known predictors of infection (i.e. sex, age, body condition). We collected biological samples from 99 rats trapped in Chicago alleys and tested these for Leptospira infection, E. coli shedding and AR exposure. We found that rats that had been exposed to ARs and survived until the time of trapping, as well as older rats, were significantly more likely to be infected with Leptospira spp. than other rats. We found no significant association between E. coli shedding and any predictors. Our results show that human actions to manage rats can affect rat disease ecology and public health risks in unintended ways, and more broadly, contribute to a growing awareness of bidirectional relationships between humans and natural systems in cities. 
    more » « less
  4. null (Ed.)
    Abstract In India, high rates of antibiotic consumption and poor sanitation infrastructure combine to pose a significant risk to the public through the environmental transmission of antimicrobial resistance (AMR). The WHO has declared extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli a key indicator for the surveillance of AMR worldwide. In the current study, we measured the prevalence of AMR bacteria in an urban aquatic environment in India by detecting metabolically active ESBL-positive E. coli. Water samples were collected in duplicate from 16 representative environmental water sources including open canals, drains, and rivers around Kanpur, Uttar Pradesh. We detected culturable E. coli in environmental water at 11 (69%) of the sites. Out of the 11 sites that were positive for culturable E. coli, ESBL-producing E. coli was observed at 7 (64%). The prevalence of ESBL-producing E. coli detected in the urban aquatic environment suggests a threat of AMR bacteria to this region. 
    more » « less
  5. null (Ed.)
    The co-existence of rats and humans in urban environments has long been a cause for concern regarding human health because of the potential for rats to harbor and transmit disease-causing pathogens. Here, we analyze whole-genome sequence (WGS) data from 41 Escherichia coli isolates collected from rat feces from 12 locations within the city of Chicago, IL, United States to determine the potential for rats to serve as a reservoir for pathogenic E. coli and describe its population structure. We identified 25 different serotypes, none of which were isolated from strains containing significant virulence markers indicating the presence of Shiga toxin-producing and other disease-causing E . coli . Nor did the E. coli isolates harbor any particularly rare stress tolerant or antimicrobial resistance genes. We then compared the isolates against a public database of approximately 100,000 E. coli and Shigella isolates of primarily food, food facility, or clinical origin. We found that only one isolate was genetically similar to genome sequences in the database. Phylogenetic analyses showed that isolates cluster by serotype, and there was little geographic structure (e.g., isolation by distance) among isolates. However, a greater signal of isolation by distance was observed when we compared genetic and geographic distances among isolates of the same serotype. This suggests that E. coli serotypes are independent lineages and recombination between serotypes is rare. 
    more » « less