skip to main content


Title: Evaluation of RNA later as a Field-Compatible Preservation Method for Metaproteomic Analyses of Bacterium-Animal Symbioses
ABSTRACT Field studies are central to environmental microbiology and microbial ecology, because they enable studies of natural microbial communities. Metaproteomics, the study of protein abundances in microbial communities, allows investigators to study these communities “ in situ ,” which requires protein preservation directly in the field because protein abundance patterns can change rapidly after sampling. Ideally, a protein preservative for field deployment works rapidly and preserves the whole proteome, is stable in long-term storage, is nonhazardous and easy to transport, and is available at low cost. Although these requirements might be met by several protein preservatives, an assessment of their suitability under field conditions when targeted for metaproteomic analyses is currently lacking. Here, we compared the protein preservation performance of flash freezing and the preservation solution RNA later using the marine gutless oligochaete Olavius algarvensis and its symbiotic microbes as a test case. In addition, we evaluated long-term RNA later storage after 1 day, 1 week, and 4 weeks at room temperature (22°C to 23°C). We evaluated protein preservation using one-dimensional liquid chromatography-tandem mass spectrometry. We found that RNA later and flash freezing preserved proteins equally well in terms of total numbers of identified proteins and relative abundances of individual proteins, and none of the test time points was altered, compared to time zero. Moreover, we did not find biases against specific taxonomic groups or proteins with particular biochemical properties. Based on our metaproteomic data and the logistical requirements for field deployment, we recommend RNA later for protein preservation of field-collected samples targeted for metaproteomic analyses. IMPORTANCE Metaproteomics, the large-scale identification and quantification of proteins from microbial communities, provide direct insights into the phenotypes of microorganisms on the molecular level. To ensure the integrity of the metaproteomic data, samples need to be preserved immediately after sampling to avoid changes in protein abundance patterns. In laboratory setups, samples for proteomic analyses are most commonly preserved by flash freezing; however, liquid nitrogen or dry ice is often unavailable at remote field locations, due to their hazardous nature and transport restrictions. Our study shows that RNA later can serve as a low-hazard, easy-to-transport alternative to flash freezing for field preservation of samples for metaproteomic analyses. We show that RNA later preserves the metaproteome equally well, compared to flash freezing, and protein abundance patterns remain stable during long-term storage for at least 4 weeks at room temperature.  more » « less
Award ID(s):
2003107 1934844
NSF-PAR ID:
10323199
Author(s) / Creator(s):
; ;
Editor(s):
Gralnick, Jeffrey A.
Date Published:
Journal Name:
Microbiology Spectrum
Volume:
9
Issue:
2
ISSN:
2165-0497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metaproteomics is a powerful tool for the characterization of metabolism, physiology, and functional interactions in microbial communities, including plant-associated microbiota. However, the metaproteomic methods that have been used to study plant-associated microbiota are very laborious and require large amounts of plant tissue, hindering wider application of these methods. We optimized and evaluated different protein extraction methods for metaproteomics of plant-associated microbiota in two different plant species ( Arabidopsis and maize). Our main goal was to identify a method that would work with low amounts of input material (40 to 70 mg) and that would maximize the number of identified microbial proteins. We tested eight protocols, each comprising a different combination of physical lysis method, extraction buffer, and cell-enrichment method on roots from plants grown with synthetic microbial communities. We assessed the performance of the extraction protocols by liquid chromatography-tandem mass spectrometry–based metaproteomics and found that the optimal extraction method differed between the two species. For Arabidopsis roots, protein extraction by beating whole roots with small beads provided the greatest number of identified microbial proteins and improved the identification of proteins from gram-positive bacteria. For maize, vortexing root pieces in the presence of large glass beads yielded the greatest number of microbial proteins identified. Based on these data, we recommend the use of these two methods for metaproteomics with Arabidopsis and maize. Furthermore, detailed descriptions of the eight tested protocols will enable future optimization of protein extraction for metaproteomics in other dicot and monocot plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license . 
    more » « less
  2. Coelho, Luis Pedro (Ed.)
    Host-microbiome interactions and the microbial community have broad impact in human health and diseases. Most microbiome based studies are performed at the genome level based on next-generation sequencing techniques, but metaproteomics is emerging as a powerful technique to study microbiome functional activity by characterizing the complex and dynamic composition of microbial proteins. We conducted a large-scale survey of human gut microbiome metaproteomic data to identify generalist species that are ubiquitously expressed across all samples and specialists that are highly expressed in a small subset of samples associated with a certain phenotype. We were able to utilize the metaproteomic mass spectrometry data to reveal the protein landscapes of these species, which enables the characterization of the expression levels of proteins of different functions and underlying regulatory mechanisms, such as operons. Finally, we were able to recover a large number of open reading frames (ORFs) with spectral support, which were missed by de novo protein-coding gene predictors. We showed that a majority of the rescued ORFs overlapped with de novo predicted protein-coding genes, but on opposite strands or in different frames. Together, these demonstrate applications of metaproteomics for the characterization of important gut bacterial species. 
    more » « less
  3. null (Ed.)
    Abstract Background A few recent large efforts significantly expanded the collection of human-associated bacterial genomes, which now contains thousands of entities including reference complete/draft genomes and metagenome assembled genomes (MAGs). These genomes provide useful resource for studying the functionality of the human-associated microbiome and their relationship with human health and diseases. One application of these genomes is to provide a universal reference for database search in metaproteomic studies, when matched metagenomic/metatranscriptomic data are unavailable. However, a greater collection of reference genomes may not necessarily result in better peptide/protein identification because the increase of search space often leads to fewer spectrum-peptide matches, not to mention the drastic increase of computation time. Methods Here, we present a new approach that uses two steps to optimize the use of the reference genomes and MAGs as the universal reference for human gut metaproteomic MS/MS data analysis. The first step is to use only the high-abundance proteins (HAPs) (i.e., ribosomal proteins and elongation factors) for metaproteomic MS/MS database search and, based on the identification results, to derive the taxonomic composition of the underlying microbial community. The second step is to expand the search database by including all proteins from identified abundant species. We call our approach HAPiID (HAPs guided metaproteomics IDentification). Results We tested our approach using human gut metaproteomic datasets from a previous study and compared it to the state-of-the-art reference database search method MetaPro-IQ for metaproteomic identification in studying human gut microbiota. Our results show that our two-steps method not only performed significantly faster but also was able to identify more peptides. We further demonstrated the application of HAPiID to revealing protein profiles of individual human-associated bacterial species, one or a few species at a time, using metaproteomic data. Conclusions The HAP guided profiling approach presents a novel effective way for constructing target database for metaproteomic data analysis. The HAPiID pipeline built upon this approach provides a universal tool for analyzing human gut-associated metaproteomic data. 
    more » « less
  4. Abstract

    Long‐term datasets are needed to evaluate temporal patterns in wildlife disease burdens, but historical data on parasite abundance are extremely rare. For more than a century, natural history collections have been accumulating fluid‐preserved specimens, which should contain the parasites infecting the host at the time of its preservation. However, before this unique data source can be exploited, we must identify the artifacts that are introduced by the preservation process. Here, we experimentally address whether the preservation process alters the degree to which metazoan parasites are detectable in fluid‐preserved fish specimens when using visual parasite detection techniques. We randomly assigned fish of three species (Gadus chalcogrammus, Thaleichthys pacificus, and Parophrys vetulus) to two treatments. In the first treatment, fish were preserved according to the standard procedures used in ichthyological collections. Immediately after the fluid‐preservation process was complete, we performed parasitological dissection on those specimens. The second treatment was a control, in which fish were dissected without being subjected to the fluid‐preservation process. We compared parasite abundance between the two treatments. Across 298 fish individuals and 59 host–parasite pairs, we found few differences between treatments, with 24 of 27 host–parasite pairs equally abundant between the two treatments. Of these, one pair was significantly more abundant in the preservation treatment than in the control group, and two pairs were significantly less abundant in the preservation treatment than in the control group. Our data suggest that the fluid‐preservation process does not have a substantial effect on the detectability of metazoan parasites. This study addresses only the effects of the fixation and preservation process; long‐term experiments are needed to address whether parasite detectability remains unchanged in the months, years, and decades of storage following preservation. If so, ecologists will be able to reconstruct novel, long‐term datasets on parasite diversity and abundance over the past century or more using fluid‐preserved specimens from natural history collections.

     
    more » « less
  5. Abstract Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments. 
    more » « less