skip to main content


Title: Functional traits explain the consistent resistance of biodiversity to plant invasion under nitrogen enrichment
Abstract

Elton's biotic resistance hypothesis, which posits that diverse communities should be more resistant to biological invasions, has received considerable experimental support. However, it remains unclear whether such a negative diversity–invasibility relationship would persist under anthropogenic environmental change. By using the common ragweed (Ambrosia artemisiifolia) as a model invader, our 4‐year grassland experiment demonstrated consistently negative relationships between resident species diversity and community invasibility, irrespective of nitrogen addition, a result further supported by a meta‐analysis. Importantly, our experiment showed that plant diversity consistently resisted invasion simultaneously through increased resident biomass, increased trait dissimilarity among residents, and increased community‐weighted means of resource‐conservative traits that strongly resist invasion, pointing to the importance of both trait complementarity and sampling effects for invasion resistance even under resource enrichment. Our study provides unique evidence that considering species’ functional traits can help further our understanding of biotic resistance to biological invasions in a changing environment.

 
more » « less
Award ID(s):
1856318 1833988
NSF-PAR ID:
10419558
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
25
Issue:
4
ISSN:
1461-023X
Page Range / eLocation ID:
p. 778-789
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Theories of plant invasions predict that plant communities should be more easily invaded when resources increase and/or competition decreases. We tested this with an experimentally introduced plant population by manipulating precipitation and resident community biomass. We used a spatially explicit demographic approach to develop a new population‐level metric of invasibility that quantifies the invasible habitat fraction (IHF) across the landscape.

    The existing community was essentially uninvasible (median IHF ≈ 0%), but experimental manipulations greatly increased the range of outcomes, with maximum observed IHF values over 50%. However, changes in invasibility were often context‐dependent, resulting in some outcomes that aligned with existing theory, and others that were not readily predicted. Moreover, variation in invasibility was often driven by specific sets of invader demographic vital rates.

    Removing competitors revealed the capacity for strong biotic resistance, but this interacted with precipitation such that little biotic resistance was detected under drought conditions. Adding precipitation typically had little positive effect on invasibility, and moderate drought relief led to relatively high invasibility. However, the latter was driven to a large extent by interactions with mammal herbivory that otherwise inhibited invasion in one year.

    Synthesis. Our findings show that interactions between abiotic and biotic factors, as well as legacy effects, can strongly mediate invasibility. This study also highlights the importance of incorporating spatial heterogeneity into population‐level assessments of invasion, as initial population declines do not necessarily indicate resistance to invasion.

     
    more » « less
  2. Abstract

    Abiotic environmental change, local species extinctions and colonization of new species often co‐occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2). Colonists with resource‐acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C‐above‐ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity‐dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.

     
    more » « less
  3. Abstract Questions

    A recently introduced non‐native annual grass,Ventenata dubia, is challenging previous conceptions of community resistance in forest mosaic communities in the Inland Northwest. However, little is known of the drivers and potential ecological impacts of this rapidly expanding species. Here we (1) identify abiotic and biotic habitat characteristics associated with theV. dubiainvasion and examine how these differ betweenV. dubiaand other problematic non‐native annual grasses,Bromus tectorumandTaeniatherum caput‐medusae; and (2) determine how burning influences relationships betweenV. dubiaand plant community composition and structure to address potential impacts on Inland Northwest forest mosaic communities.

    Location

    Blue Mountains of the Inland Northwest, USA.

    Methods

    We measured environmental and plant community characteristics in 110 recently burned and nearby unburned plots. Plots were stratified to capture a range ofV. dubiacover, elevations, biophysical classes, and fire severities. We investigated relationships betweenV. dubia, wildfire, environmental, and plant community characteristics using non‐metric multidimensional scaling and linear regressions.

    Results

    Ventenata dubiawas most abundant in sparsely vegetated, basalt‐derived rocky scablands interspersed throughout the forested landscape. Plant communities most heavily invaded byV. dubiawere largely uninvaded by other non‐native annual grasses.Ventenata dubiawas abundant in both unburned and burned areas, but negative relationships betweenV. dubiacover and community diversity were stronger in burned plots, where keystone sagebrush species were largely absent after fire.

    Conclusions

    Ventenata dubiais expanding the overall invasion footprint into previously uninvaded communities. Burning may exacerbate negative relationships betweenV. dubiaand species richness, evenness, and functional diversity, including in communities that historically rarely burned. Understanding the drivers and impacts of theV. dubiainvasion and recognizing how these differ from other annual grass invasions may provide insight into mechanisms of community invasibility, grass‐fire feedbacks, and aid the development of species‐specific management plans.

     
    more » « less
  4. Abstract

    Understanding why some, but not other, plant communities are vulnerable to alien invasive species is essential for predicting and managing biological invasions. Darwin proposed two seemingly contradictory hypotheses on how native‐invader relatedness influences invasion success, emphasizing, respectively, the importance of environmental filtering and competition between natives and invaders. Despite much recent empirical research on this topic, reconciling these two hypotheses, known as Darwin's naturalization conundrum, remains a challenge.

    Using plot‐level data from natural forests along elevational transects covering strong environmental gradients, we examined whether the invasion of the globally invasive species crofton weed (Ageratina adenophora) can be explained by environmental filtering and/or competition from closely related species linked to environmental gradients.

    Abundant precipitation, warm temperatures, open canopies and postfire environments facilitatedA. adenophorainvasion, whereas resident taxonomic richness suppressed its invasion. Importantly, we found that invader‐resident relatedness had a strong negative effect on invader cover under resource scarcity conditions (e.g. low water availability), but not under non‐resource environmental stress gradients (e.g. low temperature).

    Synthesis and applications.Our results suggest that the impact of species phylogenetic relatedness on invasion success varies distinctly along resource versus non‐resource environmental gradients. These results help to reconcile Darwin's naturalization conundrum, thereby improving the ability to predict the success of alien plant invasions in a changing world. Our study stresses the need to consider adjusting forest species composition to strengthen their resistance to invasion, while taking into account resource and non‐resource environmental gradients, particularly after wildfires.

     
    more » « less
  5. Abstract

    The role of biotic resistance is a subject of debate in our understanding of invasions. We used a well‐known system in the Northern Range of Trinidad, where ephemeral conditions in small pool habitats lead to repeated colonisation by two native species (guppies,Poecilia reticulata, and killifish,Anablepsoides hartii), to ask questions about the role of biotic resistance and intraguild predation in natural, small‐water habitats.

    Using horticultural containers under forest cover, alongside constructed bankside mesocosms, we established populations of each species to test hypotheses concerning the conditions under which the guppy, a globally successful invasive species with the potential to establish populations from a single female, could be excluded by a resident intraguild predator, the killifish.

    Recruitment success of the guppy depended on founder numbers (propagule size) and introduction order (whether first or last to arrive in the habitat). Single founder guppies always failed to recruit in pools with resident killifish, which we posit is directly attributable to biotic resistance from the resident. However, increased propagule pressure (introduction attempts and propagule number) greatly increased the probability of successful invasion.

    Our results have two main implications. The first is that guppies are capable of being successful colonisers even in the presence of a resident intraguild predator. The second is to highlight the role that biotic resistance can play in preventing establishment in small‐water habitats, especially under circumstances of low propagule pressure.

    While previous studies have shown that guppies are strong colonisers outside of their native range, our findings suggest that this may not always be the case when there are other small‐bodied fish present. Accordingly, we argue that in small‐water habitats, biotic resistance and intraguild predation relationships should be important considerations when the ability to establish is being assessed for a taxon.

     
    more » « less