skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cosmic Tangle: Loop Quantum Cosmology and CMB Anomalies
Loop quantum cosmology is a conflicted field in which exuberant claims of observability coexist with serious objections against the conceptual and physical viability of its current formulations. This contribution presents a non-technical case study of the recent claim that loop quantum cosmology might alleviate anomalies in the observations of the cosmic microwave background.  more » « less
Award ID(s):
1912168
PAR ID:
10323773
Author(s) / Creator(s):
Date Published:
Journal Name:
Universe
Volume:
7
Issue:
6
ISSN:
2218-1997
Page Range / eLocation ID:
186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Remo Ruffini (Ed.)
    We summarize the main results of 19 talks presented at the QG3 session (loop quantum gravity: cosmology and black holes) of the 16th Marcel Grossmann Meeting held online from July 5th-10th, 2021. 
    more » « less
  2. A large number of models have been analyzed in loop quantum cosmology, using mainly minisuperspace constructions and perturbations. At the same time, general physics principles from effective field theory and covariance have often been ignored. A consistent introduction of these ingredients requires substantial modifications of existing scenarios. As a consequence, none of the broader claims made mainly by the Ashtekar school—such as the genericness of bounces with astonishingly semiclassical dynamics, robustness with respect to quantization ambiguities, the realization of covariance, and the relevance of certain technical results for potential observations—hold up to scrutiny. Several useful lessons for a sustainable version of quantum cosmology can be drawn from this evaluation. 
    more » « less
  3. While the standard, six-parameter, spatially flat ΛCDM model has been highly successful, certain anomalies in the cosmic microwave background bring out a tension between this model and observations. The statistical significance of any one anomaly is small. However, taken together, the presence of two or more of them imply that according to standard inflationary theories we live in quite an exceptional Universe. We revisit the analysis of the PLANCK collaboration using loop quantum cosmology, where an unforeseen interplay between the ultraviolet and the infrared makes the primordial power spectrum scale dependent at very small k. Consequently, we are led to a somewhat different ΛCDM Universe in which anomalies associated with large scale power suppression and the lensing amplitude are both alleviated. The analysis also leads to new predictions for future observations. This article is addressed both to cosmology and loop quantum gravity communities, and we have attempted to make it self-contained. 
    more » « less
  4. Bambi, Cosimo; Modesto, Leonardo; Shapiro, Ilya (Ed.)
    We summarize our work on spherically symmetric midi-superspaces in loop quantum gravity. Our approach is based on using inhomogeneous slicings that may penetrate the horizon in case there is one and on a redefinition of the constraints so the Hamiltonian has an Abelian algebra with itself. We discuss basic and improved quantizations as is done in loop quantum cosmology. We discuss the use of parameterized Dirac observables to define operators associated with kinematical variables in the physical space of states, as a first step to introduce an operator associated with the space-time metric. We analyze the elimination of singularities and how they are replaced by extensions of the space-times. We discuss the charged case and potential observational consequences in quasinormal modes. We also analyze the covariance of the approach. Finally, we comment on other recent approaches of quantum black holes, including mini-superspaces motivated by loop quantum gravity. 
    more » « less
  5. Certain anomalies in the CMB bring out a tension between the six-parameter flat ΛCDM model and the CMB data. We revisit the PLANCK analysis with loop quantum cosmology (LQC) predictions and show that LQC alleviates both the large-scale power anomaly and the tension in the lensing amplitude. These differences arise because, in LQC, the primordial power spectrum is scale dependent for small k, with a specific power suppression. We conclude with a prediction of larger optical depth and power suppression in the B-mode polarization power spectrum on large scales. 
    more » « less