skip to main content


Title: Transamidation of thioamides with nucleophilic amines: thioamide N–C(S) activation by ground-state-destabilization
Thioamides are ‘single-atom’ isosteres of amide bonds that have found broad applications in organic synthesis, biochemistry and drug discovery. In this New Talent themed issue, we present a general strategy for activation of N–C(S) thioamide bonds by ground-state-destabilization. This concept is outlined in the context of a full study on transamidation of thioamides with nucleophilic amines, and relies on (1) site-selective N -activation of the thioamide bond to decrease resonance and (2) highly chemoselective nucleophilic acyl addition to the thioamide CS bond. The follow-up collapse of the tetrahedral intermediate is favored by the electronic properties of the amine leaving group. The ground-state-destabilization concept of thioamides enables weakening of the N–C(S) bond and rationally modifies the properties of valuable thioamide isosteres for the development of new methods in organic synthesis. We fully expect that in analogy to the burgeoning field of destabilized amides introduced by our group in 2015, the thio amide bond ground-state-destabilization activation concept will find broad applications in various facets of chemical science, including metal-free, metal-catalyzed and metal-promoted reaction pathways.  more » « less
Award ID(s):
1650766
NSF-PAR ID:
10323849
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Organic & Biomolecular Chemistry
ISSN:
1477-0520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Thioamides represent highly valuable isosteric in the strictest sense “single‐atom substitution” analogues of amides that have found broad applications in chemistry and biology. A long‐standing challenge is the direct transamidation of thioamides, a process which would convert one thioamide bond (R−C(S)−NR1R2) into another (R−C(S)−NR3N4). Herein, we report the first general method for the direct transamidation of thioamides by highly chemoselective N−C(S) transacylation. The method relies on site‐selective N‐tert‐butoxycarbonyl activation of 2° and 1° thioamides, resulting in ground‐state‐destabilization of thioamides, thus enabling to rationally manipulate nucleophilic addition to the thioamide bond. This method showcases a remarkably broad scope including late‐stage functionalization (>100 examples). We further present extensive DFT studies that provide insight into the chemoselectivity and provide guidelines for the development of transamidation methods of the thioamide bond.

     
    more » « less
  2. Abstract

    Thioamides represent highly valuable isosteric in the strictest sense “single‐atom substitution” analogues of amides that have found broad applications in chemistry and biology. A long‐standing challenge is the direct transamidation of thioamides, a process which would convert one thioamide bond (R−C(S)−NR1R2) into another (R−C(S)−NR3N4). Herein, we report the first general method for the direct transamidation of thioamides by highly chemoselective N−C(S) transacylation. The method relies on site‐selective N‐tert‐butoxycarbonyl activation of 2° and 1° thioamides, resulting in ground‐state‐destabilization of thioamides, thus enabling to rationally manipulate nucleophilic addition to the thioamide bond. This method showcases a remarkably broad scope including late‐stage functionalization (>100 examples). We further present extensive DFT studies that provide insight into the chemoselectivity and provide guidelines for the development of transamidation methods of the thioamide bond.

     
    more » « less
  3. Abstract

    The amide bond N−C activation represents a powerful strategy in organic synthesis to functionalize the historically inert amide linkage. This personal account highlights recent remarkable advances in transition‐metal‐free activation of amides by N−C bond cleavage, focusing on both (1) mechanistic aspects of ground‐state‐destabilization of the amide bond enabling formation of tetrahedral intermediates directly from amides with unprecedented selectivity, and (2) synthetic utility of the developed transformations. Direct nucleophilic addition to amides enables a myriad of powerful methods for the formation of C−C, C−N, C−O and C−S bonds, providing a straightforward and more synthetically useful alternative to acyl‐metals.

     
    more » « less
  4. Direct functionalization of the C(O)–N amide bond is one of the most high-profile research directions in the last few decades; however oxidative couplings involving amide bonds and functionalization of thioamide C(S)–N analogues remain an unsolved challenge. Herein, a novel hypervalent iodine-induced twofold oxidative coupling of amines with amides and thioamides has been established. The protocol accomplishes divergent C(O)–N and C(S)–N disconnection by the previously unknown Ar–O and Ar–S oxidative coupling and highly chemoselectively assembles the versatile yet synthetically challenging oxazoles and thiazoles. Employing amides instead of thioamides affords an alternative bond cleavage pattern, which is a result of the higher conjugation in thioamides. Mechanistic investigations indicate ureas and thioureas generated in the first oxidation as pivotal intermediates to realize the oxidative coupling. These findings open up new avenues for exploring oxidative amide and thioamide bond chemistry in various synthetic contexts. 
    more » « less
  5. null (Ed.)
    The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions. 
    more » « less