skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic power control for rational cryptocurrency mining
In blockchain and cryptocurrency, miners participate in a proof-of-work-based distributed consensus protocol to find and generate a valid block, process transactions, and earn the corresponding reward. Because cryptocurrency is designed to adapt to the dynamic miner network size, a miner's participation affects the block difficulty which sets the expected amount of work to find a valid block. We study the dependency between the mining power control and the block difficulty and study a rational miner utilizing such dependency to dynamically control its mining power over a longer horizon than just the impending block. More specifically, we introduce I-O Mining strategy where a miner takes advantage of the block difficulty adjustment rule and toggles between mining with full power and power off between the difficulty adjustments. In I-O Mining, the miner influences the block difficulty and mines only when the difficulty is low, gaming and violating the design integrity of the mining protocol for its profit gain. We analyze the I-O Mining's incentive/profit gain over the static-mining strategies and its negative impact on the rest of the blockchain mining network in the block/transaction scalability. Our results show that I-O Mining becomes even more effective and profitable as there are greater competitions for mining and the reward and the cost difference becomes smaller, which are the trends in cryptocurrencies.  more » « less
Award ID(s):
1922410
PAR ID:
10324015
Author(s) / Creator(s):
;
Date Published:
Journal Name:
the 3rd Workshop on Cryptocurrencies and Blockchains for Distributed Systems
Page Range / eLocation ID:
47 to 52
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Böhme, Rainer; Kiffer, Lucianna (Ed.)
    Cryptographic Self-Selection is a common primitive underlying leader-selection for Proof-of-Stake blockchain protocols. The concept was first popularized in Algorand [Jing Chen and Silvio Micali, 2019], who also observed that the protocol might be manipulable. [Matheus V. X. Ferreira et al., 2022] provide a concrete manipulation that is strictly profitable for a staker of any size (and also prove upper bounds on the gains from manipulation). Separately, [Maryam Bahrani and S. Matthew Weinberg, 2024; Aviv Yaish et al., 2023] initiate the study of undetectable profitable manipulations of consensus protocols with a focus on the seminal Selfish Mining strategy [Eyal and Sirer, 2014] for Bitcoin’s Proof-of-Work longest-chain protocol. They design a Selfish Mining variant that, for sufficiently large miners, is strictly profitable yet also indistinguishable to an onlooker from routine latency (that is, a sufficiently large profit-maximizing miner could use their strategy to strictly profit over being honest in a way that still appears to the rest of the network as though everyone is honest but experiencing mildly higher latency. This avoids any risk of negatively impacting the value of the underlying cryptocurrency due to attack detection). We investigate the detectability of profitable manipulations of the canonical cryptographic self-selection leader selection protocol introduced in [Jing Chen and Silvio Micali, 2019] and studied in [Matheus V. X. Ferreira et al., 2022], and establish that for any player with α < (3-√5)/2 ≈ 0.38 fraction of the total stake, every strictly profitable manipulation is statistically detectable. Specifically, we consider an onlooker who sees only the random seed of each round (and does not need to see any other broadcasts by any other players). We show that the distribution of the sequence of random seeds when any player is profitably manipulating the protocol is inconsistent with any distribution that could arise by honest stakers being offline or timing out (for a natural stylized model of honest timeouts). 
    more » « less
  2. Mining pools decrease the variance in the income of cryptocurrency miners (compared to solo mining) by distributing rewards to participating miners according to the shares submitted over a period of time. The most common definition of a “share” is a proof-of-work for a difficulty level lower than that required for block authorization—for example, a hash with at least 65 leading zeroes (in binary) rather than at least 75. The first contribution of this paper is to investigate more sophisticated approaches to pool reward distribution that use multiple classes of shares—for example, corresponding to differing numbers of leading zeroes—and assign different rewards to shares from different classes. What’s the best way to use such finer-grained information, and how much can it help? We prove that the answer is not at all: using the additional information can only increase the variance in rewards experienced by every miner. Our second contribution is to identify variance-optimal reward-sharing schemes. Here, we first prove that pay-per-share rewards simultaneously minimize the variance of all miners over all reward-sharing schemes with long-run rewards proportional to miners’ hash rates. We then show that, if we impose natural restrictions including a no-deficit condition on reward-sharing schemes, then the pay-per-last-N-shares method is optimal. 
    more » « less
  3. Calciu, Irina; Kuenning, Geoff (Ed.)
    We present RAINBLOCK, a public blockchain that achieves high transaction throughput without modifying the proof-ofwork consensus. The chief insight behind RAINBLOCK is that while consensus controls the rate at which new blocks are added to the blockchain, the number of transactions in each block is limited by I/O bottlenecks. Public blockchains like Ethereum keep the number of transactions in each block low so that all participating servers (miners) have enough time to process a block before the next block is created. By removing the I/O bottlenecks in transaction processing, RAINBLOCK allows miners to process more transactions in the same amount of time. RAINBLOCK makes two novel contributions: the RAINBLOCK architecture that removes I/O from the critical path of processing transactions (txs), and the distributed, multiversioned DSM-TREE data structure that stores the system state efficiently. We evaluate RAINBLOCK using workloads based on public Ethereum traces (including smart contracts). We show that a single RAINBLOCK miner processes 27.4K txs per second (27× higher than a single Ethereum miner). In a geo-distributed setting with four regions spread across three continents, RAINBLOCK miners process 20K txs per second. 
    more » « less
  4. Blockchain technology has been recognized as a promising solution to enhance the security and privacy of Internet of Things (IoT) and Edge Computing scenarios. Taking advantage of the Proof-of-Work (PoW) consensus protocol, which solves a computation intensive hashing puzzle, Blockchain ensures the security of the system by establishing a digital ledger. However, the computation intensive PoW favors members possessing more computing power. In the IoT paradigm, fairness in the highly heterogeneous network edge environments must consider devices with various constraints on computation power. Inspired by the advanced features of Digital Twins (DT), an emerging concept that mirrors the lifespan and operational characteristics of physical objects, we propose a novel Miner Twins (MinT) architecture to enable a fair PoW consensus mechanism for blockchains in IoT environments. MinT adopts an edge-fog-cloud hierarchy. All physical miners of the blockchain are deployed as microservices on distributed edge devices, while fog/cloud servers maintain digital twins that periodically update miners’ running status. By timely monitoring of a miner’s footprint that is mirrored by twins, a lightweight Singular Spectrum Analysis (SSA)-based detection achieves the identification of individual misbehaved miners that violate fair mining. Moreover, we also design a novel Proof-of-Behavior (PoB) consensus algorithm to detect dishonest miners that collude to control a fair mining network. A preliminary study is conducted on a proof-of-concept prototype implementation, and experimental evaluation shows the feasibility and effectiveness of the proposed MinT scheme under a distributed byzantine network environment. 
    more » « less
  5. Although Bitcoin was intended to be a decentralized digital currency, in practice, mining power is quite concentrated. This fact is a persistent source of concern for the Bitcoin community. We provide an explanation using a simple model to capture miners' incentives to invest in equipment. In our model, n miners compete for a prize of fixed size. Each miner chooses an investment q_i, incurring cost c_iq_i, and then receives reward q^{\alpha}∑_j q_j^{\alpha}, for some \alpha≥1. When c_i = c+j for all i,j, and α=1, there is a unique equilibrium where all miners invest equally. However, we prove that under seemingly mild deviations from this model, equilibrium outcomes become drastically more centralized. In particular, (a) When costs are asymmetric, if miner i chooses to invest, then miner j has market share at least 1−c_j/c_i. That is, if miner j has costs that are (e.g.) 20% lower than those of miner i, then miner j must control at least 20% of the \emph{total} mining power. (b) In the presence of economies of scale (α>1), every market participant has a market share of at least 1−1/α, implying that the market features at most α/(α−1) miners in total. We discuss the implications of our results for the future design of cryptocurrencies. In particular, our work further motivates the study of protocols that minimize "orphaned" blocks, proof-of-stake protocols, and incentive compatible protocols. 
    more » « less