skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: To Knot or Not to Knot: Multiple Conformations of the SARS-CoV-2 Frameshifting RNA Element
Award ID(s):
2030377
PAR ID:
10324135
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
143
Issue:
30
ISSN:
0002-7863
Page Range / eLocation ID:
11404 to 11422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study collections of planar curves that yield diagrams for all knots. In particular, we show that a very special class called potholder curves carries all knots. This has implications for realizing all knots and links as special types of meanders and braids. We also introduce and apply a method to compare the efficiency of various classes of curves that represent all knots. 
    more » « less
  2. We present a computer interface to visualize and interact with mathematical knots, i.e., the embeddings of closed circles in 3-dimensional Euclidean space. Mathematical knots are slightly different than everyday knots in that they are infinitely stretchy and flexible when being deformed into their topological equivalence. In this work, we design a visualization interface to depict mathematical knots as closed node-link diagrams with energies charged at each node, so that highly-tangled knots can evolve by themselves from high-energy states to minimal (or lower) energy states. With a family of interactive methods and supplementary user interface elements, out tool allows one to sketch, edit, and experiment with mathematical knots, and observe their topological evolution towards optimal embeddings. In addition, out interface can extract from the entire knot evolution those key moments where successive terms in the sequence differ by critical change; this provides a clear and intuitive way to understand and trace mathematical evolution with a minimal number of visual frames. Finally out interface is adapted and extended to support the depiction of mathematical links and braids, whose mathematical concepts and interactions are just similar to our intuition about knots. All these combine to show a mathematically rich interface to help us explore and understand a family of fundamental geometric and topological problems. 
    more » « less
  3. We use deep neural networks to machine learn correlations betweenknot invariants in various dimensions. The three-dimensional invariantof interest is the Jones polynomial J(q) J ( q ) ,and the four-dimensional invariants are the Khovanov polynomial \text{Kh}(q,t) Kh ( q , t ) ,smooth slice genus g g ,and Rasmussen’s s s -invariant.We find that a two-layer feed-forward neural network can predict s s from \text{Kh}(q,-q^{-4}) Kh ( q , − q − 4 ) with greater than 99% 99 % accuracy. A theoretical explanation for this performance exists in knottheory via the now disproven knight move conjecture, which is obeyed byall knots in our dataset. More surprisingly, we find similar performancefor the prediction of s s from \text{Kh}(q,-q^{-2}) Kh ( q , − q − 2 ) ,which suggests a novel relationship between the Khovanov and Leehomology theories of a knot. The network predicts g g from \text{Kh}(q,t) Kh ( q , t ) with similarly high accuracy, and we discuss the extent to which themachine is learning s s as opposed to g g ,since there is a general inequality |s| ≤2g | s | ≤ 2 g .The Jones polynomial, as a three-dimensional invariant, is not obviouslyrelated to s s or g g ,but the network achieves greater than 95% 95 % accuracy in predicting either from J(q) J ( q ) .Moreover, similar accuracy can be achieved by evaluating J(q) J ( q ) at roots of unity. This suggests a relationship with SU(2) S U ( 2 ) Chern—Simons theory, and we review the gauge theory construction ofKhovanov homology which may be relevant for explaining the network’sperformance. 
    more » « less