Simultaneous ring-opening copolymerization is a powerful strategy for the synthesis of highly functional copolymers from different types of cyclic monomers. Although copolymers are essential to the plastics industry, environmental concerns associated with current fossil-fuel-based synthetic polymers have led to an increasing interest in the use of renewable feedstock for polymer synthesis. Herein, we report a scalable synthetic platform to afford unique polysaccharides with different pendant functional groups from biomass-derived levoglucosan and ε-caprolactone via cationic ring-opening copolymerization (cROCOP). Biocompatible and recyclable bismuth triflate was identified as the optimal catalyst for cROCOP of levoglucosan. Copolymers from tribenzyl levoglucosan and ε-caprolactone, as well as from tribenzyl and triallyl levoglucosan, were successfully synthesized. The tribenzyl levoglucosan monomer composition ranged from 16% to 64% in the copolymers with ε-caprolactone and 22% to 79% in the copolymers with triallyl levoglucosan. The allylic levoglucosan copolymer can be utilized as a renewably derived scaffold to modify copolymer properties and create other polymer architectures via postpolymerization modification. Monomer reactivity ratios were determined to investigate the copolymer microstructure, indicating that levoglucosan-based copolymers have a gradient architecture. Additionally, we demonstrated that the copolymer glass transition temperature (Tg, ranging from −44.3 to 33.8 °C), thermal stability, and crystallization behavior could be tuned based on the copolymer composition. Overall, this work underscores the utility of levoglucosan as a bioderived feedstock for the development of functional sugar-based copolymers with applications ranging from sustainable materials to biomaterials.
more »
« less
Stereoregular functionalized polysaccharides via cationic ring-opening polymerization of biomass-derived levoglucosan
We report the facile synthesis and characterization of 1,6-α linked functional stereoregular polysaccharides from biomass-derived levoglucosan via cationic ring-opening polymerization (cROP). Levoglucosan is a bicyclic acetal with rich hydroxyl functionality, which can be synthetically modified to install a variety of pendant groups for tailored properties. We have employed biocompatible and recyclable metal triflate catalysts – scandium and bismuth triflate – for green cROP of levoglucosan derivatives, even at very low catalyst loadings of 0.5 mol%. Combined experimental and computational studies provided key kinetic, thermodynamic, and mechanistic insights into the cROP of these derivatives with metal triflates. Computational studies reveal that ring-opening of levoglucosan derivatives is preferred at the 1,6 anhydro linkage and cROP proceeds in a regio- and stereo-specific manner to form 1,6-α glycosidic linkages. DFT calculations also show that biocompatible metal triflates efficiently coordinate with levoglucosan derivatives as compared to the highly toxic PF 5 used previously. Post-polymerization modification of levoglucosan-based polysaccharides is readily performed via UV-initiated thiol–ene click reactions. The reported levoglucosan based polymers exhibit good thermal stability ( T d > 250 °C) and a wide glass transition temperature ( T g ) window (<−150 °C to 32 °C) that is accessible with thioglycerol and lauryl mercaptan pendant groups. This work demonstrates the utility of levoglucosan as a renewably-derived scaffold, enabling facile access to tailored polysaccharides that could be important in many applications ranging from sustainable materials to biologically active polymers.
more »
« less
- Award ID(s):
- 1901635
- PAR ID:
- 10324148
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 13
- Issue:
- 16
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 4512 to 4522
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This communication describes our recent efforts to utilize Wittig olefination reactions for the post-polymerization modification of polynorbornene derivatives prepared through ring opening metathesis polymerization (ROMP). Polymerizing α-bromo ester-containing norbornenes provides polymers that can undergo facile substitution with triphenylphosphine. The resulting polymeric phosphonium salt is then deprotonated to form an ylide that undergoes reaction with various aryl aldehydes in a one-pot fashion to yield the respective cinnamates. These materials can undergo further modification through photo-induced [2 + 2] cycloaddition cross-linking reactions.more » « less
-
Cyclohexene oxide (CHO) is a useful building block for the synthesis of novel materials and is a model substrate for polymerization catalyst development. The driving force for CHO polymerization is derived from its bicyclic structure, which combines the release of the enthalpy from epoxide ring-opening (ca. −15 kcal/mol) and a twist-chair-to-chair conformation shift in the cyclohexane ring (ca. −5 kcal/mol) upon enchainment. The lack of regio-defined functional handles attached to the CHO monomer limits the ability to both pre- and post-functionalize the resultant materials and establish structure–property relationships, which reduces the versatility of currently accessible materials. We report the synthesis of two series of CHO derivatives with butyl, allyl, and halogen substituents in the α and β positions relative to the epoxide ring. Adding substituents to the CHO ring was found to affect polymerization kinetics, with 4-substituted (β) CHO being more reactive than 3-substituted (α) CHO analogs when initiated with a mono(μ-alkoxo)bis(alkylaluminum) pre-catalyst. Polymer thermal properties depended on substituent location and identity. Halogenated CHO rings were most reactive and produced the highest glass transition temperatures in the resultant polymers (up to 105 °C). Density functional theory revealed a possible mechanistic explanation consistent with the observed differences in polymerization rate for the 3- and 4-substituted CHOs derived from a combination of steric and thermodynamic considerations.more » « less
-
Biomass-based polymers show promise for the mitigation of environmental issues associated with petroleum-derived commodity polymers; however, due to poor entanglement, many of these polymers typically lack mechanical strength and toughness. Herein, we report a facile approach to utilizing metal–ligand coordination to create physical crosslinking, and thus chain entanglements for plant oil-derived polymers. A series of soybean oil-derived copolymers containing a pendant acid group can be easily synthesized using free radical polymerization. The resulting chain architecture can be controlled through supramolecular interactions to produce bioplastics with enhanced thermomechanical properties. The metal–ligand coordination in this work can be varied by changing the metal lability and the density of metal–ligand bonds, allowing for further control of properties. The final bioplastics remain reprocessable and feature good thermoplastic and stimuli-responsive properties.more » « less
-
ABSTRACT New methacrylate monomers with carbazole moieties as pendant groups were synthesized by multistep syntheses starting from carbazoles with biphenyl substituents in the aromatic ring. The corresponding polymers were prepared using a free‐radical polymerization. The novel polymers containN‐alkylated carbazoles mono‐ or bi‐substituted with biphenyl groups in the aromatic ring.N‐alkyl chains in polymers vary by length and structure. All new polymers were synthesized to evaluate the structural changes in terms of their effect on the energy profile, thermal, dielectric, and photophysical properties when compared to the parent polymer poly(2‐(9H‐carbazol‐9‐yl)ethyl methacrylate). According to the obtained results, these compounds may be well suited for memory resistor devices. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019, 57, 70–76more » « less