skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New Insights into the Structure and Assembly of Bacteriophage P1
Bacteriophage P1 is the premier transducing phage of E. coli. Despite its prominence in advancing E. coli genetics, modern molecular techniques have not been applied to thoroughly understand P1 structure. Here, we report the proteome of the P1 virion as determined by liquid chromatography tandem mass-spectrometry. Additionally, a library of single-gene knockouts identified the following five previously unknown essential genes: pmgA, pmgB, pmgC, pmgG, and pmgR. In addition, proteolytic processing of the major capsid protein is a known feature of P1 morphogenesis, and we identified the processing site by N-terminal sequencing to be between E120 and S121, producing a 448-residue, 49.3 kDa mature peptide. Furthermore, the P1 defense against restriction (Dar) system consists of six known proteins that are incorporated into the virion during morphogenesis. The largest of these, DarB, is a 250 kDa protein that is believed to translocate into the cell during infection. DarB deletions indicated the presence of an N-terminal packaging signal, and the N-terminal 30 residues of DarB are shown to be sufficient for directing a heterologous reporter protein to the capsid. Taken together, the data expand on essential structural P1 proteins as well as introduces P1 as a nanomachine for cellular delivery.  more » « less
Award ID(s):
2013762
PAR ID:
10324236
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Viruses
Volume:
14
Issue:
4
ISSN:
1999-4915
Page Range / eLocation ID:
678
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cingolani, Gino (Ed.)
    Background: Genome flow is a fundamental aspect of all biological systems. In viruses, it involves movement of nucleic acid genomes into and out of a proteinaceous capsid. Viruses must recover their newly replicated genomes into a protective capsid shell (packaging) and then safely re-introduce them into a new host (ejection) to initiate infection. While the mechanisms of DNA genome packaging in large icosahedral bacteriophages (phages) and viruses have been extensively investigated, the post-packaging mechanisms involving retention, positioning, and ejection of packaged genome are poorly understood. Aims: Using the tailed phage T4 as a model, we delineated the structural and assembly intermediates involved in transitioning a DNA-full head into an infectious virion particle, and then into a genome delivering supramolecular machine. These include intermediates of neck attachment, virion assembly, and genome release into E. coli. Methods: Various intermediates produced either by mutant phage infection or recombinant protein expression have been purified and biochemically characterized. Molecular genetic approaches were used to analyze the functional significance of amino acids involved in assembly. Structures of the purified particles were determined to near atomic resolution by cryo-electron microscopy and cryo-electron tomography. Results: Following termination of headful packaging, the pressurized T4 capsid containing tightly packed genome is sealed by the assembly of neck proteins gp13 and gp14. A dramatic conformational change in the portal dodecamer is evident, which expels the packaging motor while opening sites in portal’s “clip” domain exposed outside the capsid for binding the gp13 neck protein. Unexpectedly, we discovered that a host protein Hfq, a nucleic acid binding protein, plugs the neck structure. Hfq apparently helps to further stabilize the sealed head as it awaits tail attachment. After tail attachment, a genome end, likely the last packaged DNA, descends into the tail tube and precisely positions through interaction with an N-terminal DNA-binding motif of the tape measure protein (TMP) gp29. Six coiled-coil strands of TMP form the innermost tube of phage T4 tail, connected at the top end with DNA and at the bottom end with gp48 tube and baseplate. When the tail sheath contracts and the baseplate transform from hexagon to star shape, TMP pilots the genome to the tip of the tail tube, poised for delivery. Then, when the baseplate plug is opened fully, TMP is expelled by DNA pressure and remodels into a transmembrane channel and guides the genome to flow smoothly through the E. coli membrane envelope into the cytosol. Conclusion: Our studies describe the structural transitions of a complex and large myophage T4 in unprecedented detail. The mechanisms involve symmetry matches and mismatches, morphing, conformational transitions, and molecular remodeling that lead to genome retention, genome positioning, and genome release, precisely and efficiently. 
    more » « less
  2. Frappier, Lori (Ed.)
    ABSTRACT Ubiquitous and abundant in ecosystems and microbiomes, gokushoviruses constitute a Microviridae subfamily, distantly related to bacteriophages ΦX174, α3, and G4. A high-resolution cryo-EM structure of gokushovirus ΦEC6098 was determined, and the atomic model was built de novo . Although gokushoviruses lack external scaffolding and spike proteins, which extensively interact with the ΦX174 capsid protein, the core of the ΦEC6098 coat protein (VP1) displayed a similar structure. There are, however, key differences. At each ΦEC6098 icosahedral 3-fold axis, a long insertion loop formed mushroom-like protrusions, which have been noted in lower-resolution gokushovirus structures. Hydrophobic interfaces at the bottom of these protrusions may confer stability to the capsid shell. In ΦX174, the N-terminus of the capsid protein resides directly atop the 3-fold axes of symmetry; however, the ΦEC6098 N-terminus stretched across the inner surface of the capsid shell, reaching nearly to the 5-fold axis of the neighboring pentamer. Thus, this extended N-terminus interconnected pentamers on the inside of the capsid shell, presumably promoting capsid assembly, a function performed by the ΦX174 external scaffolding protein. There were also key differences between the ΦX174-like DNA-binding J proteins and its ΦEC6098 homologue VP8. As seen with the J proteins, C-terminal VP8 residues were bound into a pocket within the major capsid protein; however, its N-terminal residues were disordered, likely due to flexibility. We show that the combined location and interaction of VP8’s C-terminus and a portion of VP1’s N-terminus are reminiscent of those seen with the ΦX174 and α3 J proteins. IMPORTANCE There is a dramatic structural and morphogenetic divide within the Microviridae . The well-studied ΦX174-like viruses have prominent spikes at their icosahedral vertices, which are absent in gokushoviruses. Instead, gokushovirus major coat proteins form extensive mushroom-like protrusions at the 3-fold axes of symmetry. In addition, gokushoviruses lack an external scaffolding protein, the more critical of the two ΦX174 assembly proteins, but retain an internal scaffolding protein. The ΦEC6098 virion suggests that key external scaffolding functions are likely performed by coat protein domains unique to gokushoviruses. Thus, within one family, different assembly paths have been taken, demonstrating how a two-scaffolding protein system can evolve into a one-scaffolding protein system, or vice versa. 
    more » « less
  3. Parrish, Colin R (Ed.)
    ABSTRACT Bracoviruses (BVs) are endogenized nudiviruses in parasitoid wasps of the microgastroid complex (order Hymenoptera: Family Braconidae). BVs produce replication-defective virions that adult female wasps use to transfer DNAs encoding virulence genes to parasitized hosts. Some BV genes are shared with nudiviruses and baculoviruses with studies of the latter providing insights on function, whereas other genes are only known from nudiviruses or other BVs which provide no functional insights. A proteomic analysis ofMicroplitis demolitorbracovirus (MdBV) virions recently identified 16 genes encoding nucleocapsid components. In this study, we further characterized most of these genes. Some nucleocapsid genes exhibited early or intermediate expression profiles, while others exhibited late expression profiles. RNA interference (RNAi) assays together with transmission electron microscopy indicatedvp39,HzNVorf9-like2,HzNVorf93-like,HzNVorf106-like,HzNVorf118-like,and 27bare required to produce capsids with a normal barrel-shaped morphology. RNAi knockdown ofvlf-1a,vlf-1b-1,vlf-1b-2,int-1,andp6.9-1did not alter the formation of barrel-shaped capsids but each reduced processing of amplified proviral segments and DNA packaging as evidenced by the formation of electron translucent capsids. All of the genes required for normal capsid assembly were also required for proviral segment processing and DNA packaging. Collectively, our results deorphanize several BV genes with previously unknown roles in virion morphogenesis. IMPORTANCEUnderstanding how bracoviruses (BVs) function in wasps is of broad interest in the study of virus evolution. This study characterizes most of theMicroplitis demolitorbracovirus (MdBV) genes whose products are nucleocapsid components. Results indicate several genes unknown outside of nudiviruses and BVs are essential for normal capsid assembly. Results also indicate most MdBV tyrosine recombinase family members and the DNA binding proteinp6.9-1are required for DNA processing and packaging into nucleocapsids. 
    more » « less
  4. null (Ed.)
    Molecular dynamics techniques provide numerous strategies for investigating biomolecular energetics, though quantitative analysis is often only accessible for relatively small (frequently monomeric) systems. To address this limit, we use simulations in combination with a simplified energetic model to study complex rearrangements in a large assembly. We use cryo-EM reconstructions to simulate the DNA packaging-associated 3 nm expansion of the protein shell of an initially assembled phage T7 capsid (called procapsid or capsid I). This is accompanied by a disorder–order transition and expansion-associated externalization displacement of the 420 N-terminal tails of the shell proteins. For the simulations, we use an all-atom structure-based model (1.07 million atoms), which is specifically designed to probe the influence of molecular sterics on dynamics. We find that the rate at which the N-terminal tails undergo translocation depends heavily on their position within hexons and pentons. Specifically, trans-shell displacements of the hexon E subunits are the most frequent and hexon A subunits are the least frequent. The simulations also implicate numerous tail translocation intermediates during tail translocation that involve topological traps, as well as sterically induced barriers. The presented study establishes a foundation for understanding the precise relationship between molecular structure and phage maturation. 
    more » « less
  5. Liu, Shan-Lu (Ed.)
    ABSTRACT Betacoronavirusesencode a conserved accessory gene within the +1 open reading frame (ORF) of nucleocapsid called the internal N gene. This gene is referred to as “I” for mouse hepatitis virus (MHV), ORF9b for severe acute respiratory CoV (SARS-CoV) and SARS-CoV-2, and ORF8b for Middle East respiratory syndrome CoV (MERS-CoV). Previous studies have shown ORF8b and ORF9b have immunoevasive properties, while the only known information for MHV I is its localization within the virion of the hepatotropic/neurotropic A59 strain of MHV. Whether MHV I is an innate immune antagonist or has other functions has not been evaluated. In this report, we show that the I protein of the neurotropic JHM strain of MHV (JHMV) lacks a N terminal domain present in other MHV strains, has immunoevasive properties, and is a component of the virion. Genetic deletion of JHMV I (rJHMVIΔ57-137) resulted in a highly attenuated virus bothin vitroandin vivothat displayed a post RNA replication/transcription defect that ultimately resulted in fewer infectious virions packaged compared with wild-type virus. This phenotype was only seen for rJHMVIΔ57-137, suggesting the structural changes predicted for A59 I altered its function, as genetic deletion of A59 I did not change viral replication or pathogenicity. Together, these data show that JHMV I both acts as a mild innate immune antagonist and aids in viral assembly and infectious virus production, and suggest that the internal N proteins from different betacoronaviruses have both common and virus strain-specific properties.IMPORTANCECoV accessory genes are largely studied in overexpression assays and have been identified as innate immune antagonists. However, functions identified after overexpression are often not confirmed in the infected animal host. Furthermore, some accessory proteins are components of the CoV virion, but their role in viral replication and release remains unclear. Here, we utilized reverse genetics to abrogate expression of a conserved CoV accessory gene, the internal N (“I”) gene, of the neurotropic JHMV strain of MHV and found that loss of the I gene resulted in a post replication defect that reduced virion assembly and ultimately infectious virus production, while also increasing some inflammatory molecule expression. Thus, the JHMV I protein has roles in virion assembly that were previously underappreciated and in immunoevasion. 
    more » « less