skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Models for Assessing Strategies for Improving Hospital Capacity for Handling Patients during a Pandemic
Abstract Objective: The aim of this study was to investigate the performance of key hospital units associated with emergency care of both routine emergency and pandemic (COVID-19) patients under capacity enhancing strategies. Methods: This investigation was conducted using whole-hospital, resource-constrained, patient-based, stochastic, discrete-event, simulation models of a generic 200-bed urban U.S. tertiary hospital serving routine emergency and COVID-19 patients. Systematically designed numerical experiments were conducted to provide generalizable insights into how hospital functionality may be affected by the care of COVID-19 pandemic patients along specially designated care paths, under changing pandemic situations, from getting ready to turning all of its resources to pandemic care. Results: Several insights are presented. For example, each day of reduction in average ICU length of stay increases intensive care unit patient throughput by up to 24% for high COVID-19 daily patient arrival levels. The potential of 5 specific interventions and 2 critical shifts in care strategies to significantly increase hospital capacity is also described. Conclusions: These estimates enable hospitals to repurpose space, modify operations, implement crisis standards of care, collaborate with other health care facilities, or request external support, thereby increasing the likelihood that arriving patients will find an open staffed bed when 1 is needed.  more » « less
Award ID(s):
2027624
PAR ID:
10324296
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Disaster Medicine and Public Health Preparedness
ISSN:
1935-7893
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This project seeks to investigate the under addressed issue of indoor environmental quality (IEQ) and the impacts these factors can have on human health. The recent COVID-19 pandemic has once again brought to the forefront the importance of maintaining a healthy indoor environment. Specifically, the improvement of indoor air flow has shown to reduce the risk of airborne virus exposure. This is extremely important in the context of hospitals, which contain high concentrations of atrisk individuals. Thus, the need to create a healthy indoor space is critical to improve public health and COVID-19 mitigation efforts. To create knowledge and provide insight on environmental qualities in the hospital setting, the authors have designed and built an interface to deploy in the University of Virginia Hospital Emergency Department (ED). The interface will display room-specific light, noise, temperature, CO 2 , humidity, VOC, and PM 2.5 levels measured by the low-cost Awair Omni sensor. These insights will assist ED clinicians in mitigating disease-spread and improving patient health and satisfaction while reducing caregiver burden. The team addressed the problem through agile development involving localized sensor deployment and analysis, discovery interviews with hospital clinicians and data scientists throughout, and the implementation of a human-design centered Django interface application. Furthermore, a literature survey was conducted to ascertain appropriate thresholds for the different environmental factors. Together, this work demonstrates opportunities to assist and improve patient care with environmental data. 
    more » « less
  2. The COVID-19 pandemic has infected millions of people around the world, spreading rapidly and causing a flood of patients that risk overwhelming clinical facilities. Whether in urban or rural areas, hospitals have limited resources and personnel to treat critical infections in intensive care units, which must be allocated effectively. To assist clinical staff in deciding which patients are in the greatest need of critical care, we develop a predictive model based on a publicly-available data set that is rich in clinical markers. We perform statistical analysis to determine which clinical markers strongly correlate with hospital admission, semi-intensive care, and intensive care for COVID-19 patients. We create a predictive model that will assist clinical personnel in determining COVID-19 patient prognosis. Additionally, we take a step towards a global framework for COVID-19 prognosis prediction by incorporating statistical data for geographically and ethnically diverse COVID--19 patient sets into our own model. To the best of our knowledge, this is the first model which does not exclusively utilize local data. 
    more » « less
  3. null (Ed.)
    Background The COVID-19 health crisis has disproportionately impacted populations who have been historically marginalized in health care and public health, including low-income and racial and ethnic minority groups. Members of marginalized communities experience undue barriers to accessing health care through virtual care technologies, which have become the primary mode of ambulatory health care delivery during the COVID-19 pandemic. Insights generated during the COVID-19 pandemic can inform strategies to promote health equity in virtual care now and in the future. Objective The aim of this study is to generate insights arising from literature that was published in direct response to the widespread use of virtual care during the COVID-19 pandemic, and had a primary focus on providing recommendations for promoting health equity in the delivery of virtual care. Methods We conducted a narrative review of literature on health equity and virtual care during the COVID-19 pandemic published in 2020, describing strategies that have been proposed in the literature at three levels: (1) policy and government, (2) organizations and health systems, and (3) communities and patients. Results We highlight three strategies for promoting health equity through virtual care that have been underaddressed in this literature: (1) simplifying complex interfaces and workflows, (2) using supportive intermediaries, and (3) creating mechanisms through which marginalized community members can provide immediate input into the planning and delivery of virtual care. Conclusions We conclude by outlining three areas of work that are required to ensure that virtual care is employed in ways that are equity enhancing in a post–COVID-19 reality. 
    more » « less
  4. null (Ed.)
    Background . New York City (NYC) experienced an initial surge and gradual decline in the number of SARS-CoV-2-confirmed cases in 2020. A change in the pattern of laboratory test results in COVID-19 patients over this time has not been reported or correlated with patient outcome. Methods . We performed a retrospective study of routine laboratory and SARS-CoV-2 RT-PCR test results from 5,785 patients evaluated in a NYC hospital emergency department from March to June employing machine learning analysis. Results . A COVID-19 high-risk laboratory test result profile (COVID19-HRP), consisting of 21 routine blood tests, was identified to characterize the SARS-CoV-2 patients. Approximately half of the SARS-CoV-2 positive patients had the distinct COVID19-HRP that separated them from SARS-CoV-2 negative patients. SARS-CoV-2 patients with the COVID19-HRP had higher SARS-CoV-2 viral loads, determined by cycle threshold values from the RT-PCR, and poorer clinical outcome compared to other positive patients without the COVID12-HRP. Furthermore, the percentage of SARS-CoV-2 patients with the COVID19-HRP has significantly decreased from March/April to May/June. Notably, viral load in the SARS-CoV-2 patients declined, and their laboratory profile became less distinguishable from SARS-CoV-2 negative patients in the later phase. Conclusions . Our longitudinal analysis illustrates the temporal change of laboratory test result profile in SARS-CoV-2 patients and the COVID-19 evolvement in a US epicenter. This analysis could become an important tool in COVID-19 population disease severity tracking and prediction. In addition, this analysis may play an important role in prioritizing high-risk patients, assisting in patient triaging and optimizing the usage of resources. 
    more » « less
  5. null (Ed.)
    Objective: To identify differences in short-term outcomes of patients with coronavirus disease 2019 (COVID-19) according to various racial/ethnic groups.Design: Analysis of Cerner de-identified COVID-19 dataset.Setting: A total of 62 health care facilities.Participants: The cohort included 49,277 adult COVID-19 patients who were hospitalized from December 1, 2019 to November 13, 2020.Methods: We compared patients’ age, gender, individual components of Charl­son and Elixhauser comorbidities, medical complications, use of do-not-resuscitate, use of palliative care, and socioeconomic status between various racial and/or ethnic groups. We further compared the rates of in-hos­pital mortality and non-routine discharges between various racial and/or ethnic groups.Main Outcome Measures: The primary outcome of interest was in-hospital mortali­ty. The secondary outcome was non-routine discharge (discharge to destinations other than home, such as short-term hospitals or other facilities including intermediate care and skilled nursing homes).Results: Compared with White patients, in-hospital mortality was significantly higher among African American (OR 1.5; 95%CI:1.3-1.6, P<.001), Hispanic (OR1.4; 95%CI:1.3-1.6, P<.001), and Asian or Pacific Islander (OR 1.5; 95%CI: 1.1-1.9, P=.002) patients after adjustment for age and gender, Elixhauser comorbidities, do-not-resuscitate status, palliative care use, and socioeconomic status.Conclusions: Our study found that, among hospitalized patients with COVID-2019, African American, Hispanic, and Asian or Pacific Islander patients had increased mortality compared with White patients after adjusting for sociodemographic factors, comorbidities, and do-not-resuscitate/pallia­tive care status. Our findings add additional perspective to other recent studies. Ethn Dis. 2021;31(3):389-398; doi:10.18865/ed.31.3.389 
    more » « less