skip to main content


Title: Models for Assessing Strategies for Improving Hospital Capacity for Handling Patients during a Pandemic
Abstract Objective: The aim of this study was to investigate the performance of key hospital units associated with emergency care of both routine emergency and pandemic (COVID-19) patients under capacity enhancing strategies. Methods: This investigation was conducted using whole-hospital, resource-constrained, patient-based, stochastic, discrete-event, simulation models of a generic 200-bed urban U.S. tertiary hospital serving routine emergency and COVID-19 patients. Systematically designed numerical experiments were conducted to provide generalizable insights into how hospital functionality may be affected by the care of COVID-19 pandemic patients along specially designated care paths, under changing pandemic situations, from getting ready to turning all of its resources to pandemic care. Results: Several insights are presented. For example, each day of reduction in average ICU length of stay increases intensive care unit patient throughput by up to 24% for high COVID-19 daily patient arrival levels. The potential of 5 specific interventions and 2 critical shifts in care strategies to significantly increase hospital capacity is also described. Conclusions: These estimates enable hospitals to repurpose space, modify operations, implement crisis standards of care, collaborate with other health care facilities, or request external support, thereby increasing the likelihood that arriving patients will find an open staffed bed when 1 is needed.  more » « less
Award ID(s):
2027624
NSF-PAR ID:
10324296
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Disaster Medicine and Public Health Preparedness
ISSN:
1935-7893
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This project seeks to investigate the under addressed issue of indoor environmental quality (IEQ) and the impacts these factors can have on human health. The recent COVID-19 pandemic has once again brought to the forefront the importance of maintaining a healthy indoor environment. Specifically, the improvement of indoor air flow has shown to reduce the risk of airborne virus exposure. This is extremely important in the context of hospitals, which contain high concentrations of atrisk individuals. Thus, the need to create a healthy indoor space is critical to improve public health and COVID-19 mitigation efforts. To create knowledge and provide insight on environmental qualities in the hospital setting, the authors have designed and built an interface to deploy in the University of Virginia Hospital Emergency Department (ED). The interface will display room-specific light, noise, temperature, CO 2 , humidity, VOC, and PM 2.5 levels measured by the low-cost Awair Omni sensor. These insights will assist ED clinicians in mitigating disease-spread and improving patient health and satisfaction while reducing caregiver burden. The team addressed the problem through agile development involving localized sensor deployment and analysis, discovery interviews with hospital clinicians and data scientists throughout, and the implementation of a human-design centered Django interface application. Furthermore, a literature survey was conducted to ascertain appropriate thresholds for the different environmental factors. Together, this work demonstrates opportunities to assist and improve patient care with environmental data. 
    more » « less
  2. Abstract Background

    SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial communities predict SARS-CoV-2 occurrence in a hospital setting.

    Methods

    We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify SARS-CoV-2 RNA detection with a random forest model.

    Results

    Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples. 16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genusRothiastrongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive surface and human samples, even when compared to samples from patients in other intensive care units prior to the COVID-19 pandemic.

    Conclusions

    These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital environment.

     
    more » « less
  3. Abstract Background We previously developed and validated a predictive model to help clinicians identify hospitalized adults with coronavirus disease 2019 (COVID-19) who may be ready for discharge given their low risk of adverse events. Whether this algorithm can prompt more timely discharge for stable patients in practice is unknown. Objectives The aim of the study is to estimate the effect of displaying risk scores on length of stay (LOS). Methods We integrated model output into the electronic health record (EHR) at four hospitals in one health system by displaying a green/orange/red score indicating low/moderate/high-risk in a patient list column and a larger COVID-19 summary report visible for each patient. Display of the score was pseudo-randomized 1:1 into intervention and control arms using a patient identifier passed to the model execution code. Intervention effect was assessed by comparing LOS between intervention and control groups. Adverse safety outcomes of death, hospice, and re-presentation were tested separately and as a composite indicator. We tracked adoption and sustained use through daily counts of score displays. Results Enrolling 1,010 patients from May 15, 2020 to December 7, 2020, the trial found no detectable difference in LOS. The intervention had no impact on safety indicators of death, hospice or re-presentation after discharge. The scores were displayed consistently throughout the study period but the study lacks a causally linked process measure of provider actions based on the score. Secondary analysis revealed complex dynamics in LOS temporally, by primary symptom, and hospital location. Conclusion An AI-based COVID-19 risk score displayed passively to clinicians during routine care of hospitalized adults with COVID-19 was safe but had no detectable impact on LOS. Health technology challenges such as insufficient adoption, nonuniform use, and provider trust compounded with temporal factors of the COVID-19 pandemic may have contributed to the null result. Trial registration ClinicalTrials.gov identifier: NCT04570488. 
    more » « less
  4. Intensive care occupancy is an important indicator of health care stress that has been used to guide policy decisions during the COVID‐19 pandemic. Toward reliable decision‐making as a pandemic progresses, estimating the rates at which patients are admitted to and discharged from hospitals and intensive care units (ICUs) is crucial. Since individual‐level hospital data are rarely available to modelers in each geographic locality of interest, it is important to develop tools for inferring these rates from publicly available daily numbers of hospital and ICU beds occupied. We develop such an estimation approach based on an immigration‐death process that models fluctuations of ICU occupancy. Our flexible framework allows for immigration and death rates to depend on covariates, such as hospital bed occupancy and daily SARS‐CoV‐2 test positivity rate, which may drive changes in hospital ICU operations. We demonstrate via simulation studies that the proposed method performs well on noisy time series data and apply our statistical framework to hospitalization data from the University of California, Irvine (UCI) Health and Orange County, California. By introducing a likelihood‐based framework where immigration and death rates can vary with covariates, we find, through rigorous model selection, that hospitalization and positivity rates are crucial covariates for modeling ICU stay dynamics and validate our per‐patient ICU stay estimates using anonymized patient‐level UCI hospital data.

     
    more » « less
  5. null (Ed.)
    Background . New York City (NYC) experienced an initial surge and gradual decline in the number of SARS-CoV-2-confirmed cases in 2020. A change in the pattern of laboratory test results in COVID-19 patients over this time has not been reported or correlated with patient outcome. Methods . We performed a retrospective study of routine laboratory and SARS-CoV-2 RT-PCR test results from 5,785 patients evaluated in a NYC hospital emergency department from March to June employing machine learning analysis. Results . A COVID-19 high-risk laboratory test result profile (COVID19-HRP), consisting of 21 routine blood tests, was identified to characterize the SARS-CoV-2 patients. Approximately half of the SARS-CoV-2 positive patients had the distinct COVID19-HRP that separated them from SARS-CoV-2 negative patients. SARS-CoV-2 patients with the COVID19-HRP had higher SARS-CoV-2 viral loads, determined by cycle threshold values from the RT-PCR, and poorer clinical outcome compared to other positive patients without the COVID12-HRP. Furthermore, the percentage of SARS-CoV-2 patients with the COVID19-HRP has significantly decreased from March/April to May/June. Notably, viral load in the SARS-CoV-2 patients declined, and their laboratory profile became less distinguishable from SARS-CoV-2 negative patients in the later phase. Conclusions . Our longitudinal analysis illustrates the temporal change of laboratory test result profile in SARS-CoV-2 patients and the COVID-19 evolvement in a US epicenter. This analysis could become an important tool in COVID-19 population disease severity tracking and prediction. In addition, this analysis may play an important role in prioritizing high-risk patients, assisting in patient triaging and optimizing the usage of resources. 
    more » « less