skip to main content


Title: Earth's inner core rotation, 1971 to 1974, illuminated by inner-core scattered waves
Award ID(s):
2041892
NSF-PAR ID:
10324380
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Earth and Planetary Science Letters
Volume:
577
Issue:
C
ISSN:
0012-821X
Page Range / eLocation ID:
117214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The original paper by Chao (2017,https://doi.org/10.1002/2017JB014405), denoted C17, derived the period of the Earth's free inner‐core wobble (ICW) with a result which was both retrograde and substantially longer than the prograde period derived by previous authors. Here we correct major errors in C17, bringing the result into better agreement with previous derivations, and clarify the role of the various torques on the Earth's inner core (IC) as presented in C17. One serious discrepancy was the magnitude of, the zonal quadrupole of the mantle mass distribution, which is incorrectly evaluated in C17, with a value too large compared to those that have been previously well established for a hydrostatic Earth model. Moreover, an error in the kinematics of the ICW in C17 leads to a wrong sign for the gravitational torque exerted by the mantle on the IC. The combination of these errors led to the erroneous conclusion that the ICW is retrograde, with a much longer period (−15.6 yr) compared to previous derivations, which showed it to be prograde with a period of about +7 yr. In correcting C17, we elucidate the complete torque balance involved in the ICW.

     
    more » « less
  2. Abstract

    Cation‐π interactions are theoretically investigated for alkali metal cation (M+)‐circumcoronene (CC) complexes (M = Li, Na, K), in gas phase and in aqueous solution with consideration of micro‐ and global solvation models using the DFT/PBEh‐3c‐RI/TZVP method. The solvent effect on the M+–CC energy interaction regarding the cation size and the stability of inner‐ and outer‐sphere [M(H2O)n]+–CC complexes are calculated by means of geometry optimizations and potential energy (PE) curves. The PE curves, calculated as a function of perpendicular distance of M+to the CC plane, predicted one energy minimum for each of the isolated M+–CC complexes. However, for microhydrated complexes, two minima assigned to two different surface complexations were obtained. Microhydrated Li+and Na+favored outer‐sphere complexation while inner‐sphere complexation was found more stable for microhydrated K+. These results illustrate nicely the key role, which the cation radius plays for the polarization of the water molecules and the aromatic system.

     
    more » « less