skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Almost isotropic Kähler manifolds
Abstract Let M be a complete Riemannian manifold and suppose {p\in M} . For each unit vector {v\in T_{p}M} , the Jacobi operator , {\mathcal{J}_{v}:v^{\perp}\rightarrow v^{\perp}} is the symmetric endomorphism, {\mathcal{J}_{v}(w)=R(w,v)v} . Then p is an isotropic point if there exists a constant {\kappa_{p}\in{\mathbb{R}}} such that {\mathcal{J}_{v}=\kappa_{p}\operatorname{Id}_{v^{\perp}}} for each unit vector {v\in T_{p}M} . If all points are isotropic, then M is said to be isotropic; it is a classical result of Schur that isotropic manifolds of dimension at least 3 have constant sectional curvatures. In this paper we consider almost isotropic manifolds , i.e. manifolds having the property that for each {p\in M} , there exists a constant {\kappa_{p}\in\mathbb{R}} such that the Jacobi operators {\mathcal{J}_{v}} satisfy {\operatorname{rank}({\mathcal{J}_{v}-\kappa_{p}\operatorname{Id}_{v^{\perp}}}% )\leq 1} for each unit vector {v\in T_{p}M} . Our main theorem classifies the almost isotropic simply connected Kähler manifolds, proving that those of dimension {d=2n\geqslant 4} are either isometric to complex projective space or complex hyperbolic space or are totally geodesically foliated by leaves isometric to {{\mathbb{C}}^{n-1}} .  more » « less
Award ID(s):
1607260
PAR ID:
10324455
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal für die reine und angewandte Mathematik (Crelles Journal)
Volume:
2020
Issue:
767
ISSN:
0075-4102
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For a free group F r F_{r} of finite rank r ≥ 2 r\geq 2 and a non-trivial element w ∈ F r w\in F_{r} , the primitivity rank π ⁢ ( w ) \pi(w) is the smallest rank of a subgroup H ≤ F r H\leq F_{r} such that w ∈ H w\in H and 𝑤 is not primitive in 𝐻 (if no such 𝐻 exists, one puts π ⁢ ( w ) = ∞ \pi(w)=\infty ).The set of all subgroups of F r F_{r} of rank π ⁢ ( w ) \pi(w) containing 𝑤 as a non-primitive element is denoted by Crit ⁡ ( w ) \operatorname{Crit}(w) .These notions were introduced by Puder (2014).We prove that there exists an exponentially generic subset V ⊆ F r V\subseteq F_{r} such that, for every w ∈ V w\in V , we have π ⁢ ( w ) = r \pi(w)=r and Crit ⁡ ( w ) = { F r } \operatorname{Crit}(w)=\{F_{r}\} . 
    more » « less
  2. For any finite horizon Sinai billiard map \begin{document}$ T $$\end{document} on the two-torus, we find \begin{document}$$ t_*>1 $$\end{document} such that for each \begin{document}$$ t\in (0,t_*) $$\end{document} there exists a unique equilibrium state \begin{document}$$ \mu_t $$\end{document} for \begin{document}$$ - t\log J^uT $$\end{document}, and \begin{document}$$ \mu_t $$\end{document} is \begin{document}$$ T $$\end{document}-adapted. (In particular, the SRB measure is the unique equilibrium state for \begin{document}$$ - \log J^uT $$\end{document}.) We show that \begin{document}$$ \mu_t $$\end{document} is exponentially mixing for Hölder observables, and the pressure function \begin{document}$$ P(t) = \sup_\mu \{h_\mu -\int t\log J^uT d \mu\} $$\end{document} is analytic on \begin{document}$$ (0,t_*) $$\end{document}. In addition, \begin{document}$$ P(t) $$\end{document} is strictly convex if and only if \begin{document}$$ \log J^uT $$\end{document} is not \begin{document}$$ \mu_t $$\end{document}-a.e. cohomologous to a constant, while, if there exist \begin{document}$$ t_a\ne t_b $$\end{document} with \begin{document}$$ \mu_{t_a} = \mu_{t_b} $$\end{document}, then \begin{document}$$ P(t) $$\end{document} is affine on \begin{document}$$ (0,t_*) $$\end{document}. An additional sparse recurrence condition gives \begin{document}$$ \lim_{t\downarrow 0} P(t) = P(0) $$\end{document}$. 
    more » « less
  3. null (Ed.)
    Abstract If $$R$$ is the ring of integers of a number field, then there exists a polynomial parametrization of the set $$\operatorname{SL}_2(R)$$, that is, an element $$A\in{\textrm{SL}}_2(\mathbb{Z}[x_1,\ldots ,x_n])$$ such that every element of $$\operatorname{SL}_2(R)$$ is obtained by specializing $$A$$ via some homomorphism $$\mathbb{Z}[x_1,\ldots ,x_n]\to R$$. 
    more » « less
  4. Meka, Raghu (Ed.)
    A Matching Vector (MV) family modulo a positive integer m ≥ 2 is a pair of ordered lists U = (u_1, ⋯, u_K) and V = (v_1, ⋯, v_K) where u_i, v_j ∈ ℤ_m^n with the following property: for any i ∈ [K], the inner product ⟨u_i, v_i⟩ = 0 mod m, and for any i ≠ j, ⟨u_i, v_j⟩ ≠ 0 mod m. An MV family is called r-restricted if inner products ⟨u_i, v_j⟩, for all i,j, take at most r different values. The r-restricted MV families are extremely important since the only known construction of constant-query subexponential locally decodable codes (LDCs) are based on them. Such LDCs constructed via matching vector families are called matching vector codes. Let MV(m,n) (respectively MV(m, n, r)) denote the largest K such that there exists an MV family (respectively r-restricted MV family) of size K in ℤ_m^n. Such a MV family can be transformed in a black-box manner to a good r-query locally decodable code taking messages of length K to codewords of length N = m^n. For small prime m, an almost tight bound MV(m,n) ≤ O(m^{n/2}) was first shown by Dvir, Gopalan, Yekhanin (FOCS'10, SICOMP'11), while for general m, the same paper established an upper bound of O(m^{n-1+o_m(1)}), with o_m(1) denoting a function that goes to zero when m grows. For any arbitrary constant r ≥ 3 and composite m, the best upper bound till date on MV(m,n,r) is O(m^{n/2}), is due to Bhowmick, Dvir and Lovett (STOC'13, SICOMP'14).In a breakthrough work, Alrabiah, Guruswami, Kothari and Manohar (STOC'23) implicitly improve this bound for 3-restricted families to MV(m, n, 3) ≤ O(m^{n/3}). In this work, we present an upper bound for r = 3 where MV(m,n,3) ≤ m^{n/6 +O(log n)}, and as a result, any 3-query matching vector code must have codeword length of N ≥ K^{6-o(1)}. 
    more » « less
  5. null (Ed.)
    Abstract For each integer $$t$$ a tensor category $$\mathcal{V}_t$$ is constructed, such that exact tensor functors $$\mathcal{V}_t\rightarrow \mathcal{C}$$ classify dualizable $$t$$-dimensional objects in $$\mathcal{C}$$ not annihilated by any Schur functor. This means that $$\mathcal{V}_t$$ is the “abelian envelope” of the Deligne category $$\mathcal{D}_t=\operatorname{Rep}(GL_t)$$. Any tensor functor $$\operatorname{Rep}(GL_t)\longrightarrow \mathcal{C}$$ is proved to factor either through $$\mathcal{V}_t$$ or through one of the classical categories $$\operatorname{Rep}(GL(m|n))$$ with $m-n=t$. The universal property of $$\mathcal{V}_t$$ implies that it is equivalent to the categories $$\operatorname{Rep}_{\mathcal{D}_{t_1}\otimes \mathcal{D}_{t_2}}(GL(X),\epsilon )$$, ($$t=t_1+t_2$$, $$t_1$$ not an integer) suggested by Deligne as candidates for the role of abelian envelope. 
    more » « less