skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Micro-Technologies for Assessing Microbial Dynamics in Controlled Environments
With recent advances in microfabrication technologies, the miniaturization of traditional culturing techniques has provided ideal methods for interrogating microbial communities in a confined and finely controlled environment. Micro-technologies offer high-throughput screening and analysis, reduced experimental time and resources, and have low footprint. More importantly, they provide access to culturing microbes in situ in their natural environments and similarly, offer optical access to real-time dynamics under a microscope. Utilizing micro-technologies for the discovery, isolation and cultivation of “unculturable” species will propel many fields forward; drug discovery, point-of-care diagnostics, and fundamental studies in microbial community behaviors rely on the exploration of novel metabolic pathways. However, micro-technologies are still largely proof-of-concept, and scalability and commercialization of micro-technologies will require increased accessibility to expensive equipment and resources, as well as simpler designs for usability. Here, we discuss three different miniaturized culturing practices; including microarrays, micromachined devices, and microfluidics; advancements to the field, and perceived challenges.  more » « less
Award ID(s):
2104731
PAR ID:
10324518
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
12
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Methods for detecting and monitoring known and emerging viral pathogens in the environment are imperative for understanding risk and establishing regulatory standards in environmental and public health sectors. Next-generation sequencing (NGS) has uncovered the diversity of entire microbial populations, enabled discovery of novel organisms, and allowed pathogen surveillance. Metagenomics, the sequencing and analysis of all genetic material in a sample, is a detection method that circumvents the need for cell culturing and prior understanding of microbial assemblies, which are necessary in traditional detection methods. Advancements in NGS technologies have led to subsequent advancements in data analysis methodologies and practices to increase specificity, and accuracy of metagenomic studies. This paper highlights applications of metagenomics inviral pathogen detection, discusses suggested best practices for detecting the diversity of viruses in environmental systems (specifically water environments), and addresses the limitations of virus detection using NGS methods. Information presented in this paper will assist researchers in selecting an appropriate metagenomics approach for obtaining a comprehensive view of viruses in water systems. 
    more » « less
  2. Advances in high-throughput technologies have enhanced our ability to describe microbial communities as they relate to human health and disease. Alongside the growth in sequencing data has come an influx of resources that synthesize knowledge surrounding microbial traits, functions, and metabolic potential with knowledge of how they may impact host pathways to influence disease phenotypes. These knowledge bases can enable the development of mechanistic explanations that may underlie correlations detected between microbial communities and disease. In this review, we survey existing resources and methodologies for the computational integration of broad classes of microbial and host knowledge. We evaluate these knowledge bases in their access methods, content, and source characteristics. We discuss challenges of the creation and utilization of knowledge bases including inconsistency of nomenclature assignment of taxa and metabolites across sources, whether the biological entities represented are rooted in ontologies or taxonomies, and how the structure and accessibility limit the diversity of applications and user types. We make this information available in a code and data repository at:https://github.com/lozuponelab/knowledge-source-mappings. Addressing these challenges will allow for the development of more effective tools for drawing from abundant knowledge to find new insights into microbial mechanisms in disease by fostering a systematic and unbiased exploration of existing information. 
    more » « less
  3. Becket, Elinne (Ed.)
    ABSTRACT We recovered 57 bacterial metagenome-assembled genomes (MAGs) from benthic microbial mat pinnacles from Lake Vanda, Antarctica. These MAGs provide access to genomes from polar environments and can assist in culturing and utilizing these Antarctic bacteria. 
    more » « less
  4. Summary The lithified oceanic crust, lower crust gabbros in particular, has remained largely unexplored by microbiologists. Recently, evidence for heterogeneously distributed viable and transcriptionally active autotrophic and heterotrophic microbial populations within low‐biomass communities was found down to 750 m below the seafloor at the Atlantis Bank Gabbro Massif, Indian Ocean. Here, we report on the diversity, activity and adaptations of fungal communities in the deep oceanic crust from ~10 to 780 mbsf by combining metabarcoding analyses with mid/high‐throughput culturing approaches. Metabarcoding along with culturing indicate a low diversity of viable fungi, mostly affiliated to ubiquitous (terrestrial and aquatic environments) taxa. Ecophysiological analyses coupled with metatranscriptomics point to viable and transcriptionally active fungal populations engaged in cell division, translation, protein modifications and other vital cellular processes. Transcript data suggest possible adaptations for surviving in the nutrient‐poor, lithified deep biosphere that include the recycling of organic matter. These active communities appear strongly influenced by the presence of cracks and veins in the rocks where fluids and resulting rock alteration create micro‐niches. 
    more » « less
  5. Abstract The diversity of plant natural products presents a rich resource for accelerating drug discovery and addressing pressing human health issues. However, the challenges in accessing and cultivating source species, as well as metabolite structural complexity, and general low abundance present considerable hurdles in developing plant-derived therapeutics. Advances in high-throughput sequencing, genome assembly, gene synthesis, analytical technologies, and synthetic biology approaches, now enable us to efficiently identify and engineer enzymes and metabolic pathways for producing natural and new-to-nature therapeutics and drug candidates. This review highlights challenges and progress in plant natural product discovery and engineering by example of recent breakthroughs in identifying the missing enzymes involved in the biosynthesis of the anti-cancer agent Taxol®. These enzyme resources offer new avenues for the bio-manufacture and semi-synthesis of an old blockbuster drug. 
    more » « less