skip to main content


Title: Introductory Physics Labs: A Tale of Two Transformations
A significant challenge physics faculty face teaching introductory labs is engaging students in authentic science practices. Another has been highlighted given the current global pandemic—how to engage students in our laboratory courses while maintaining appropriate social distancing and hygiene standards. We have chosen to answer these challenges by transforming our labs…twice. We discuss the rationale behind the first transformation to a practice-focused curriculum. In March 2020 we needed to transform our labs again, this time to accommodate online learning. This paper discusses two chief questions: “What are we doing to engage students in science practices?” and “How did we make all of this work online?”  more » « less
Award ID(s):
1725655
NSF-PAR ID:
10324704
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Physics Teacher
Volume:
60
Issue:
5
ISSN:
0031-921X
Page Range / eLocation ID:
372 to 375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    With the increasing popularity of distance education, how to engage students in online inquiry‐based laboratories remains challenging for science teachers. Current remote labs mostly adopt a centralized model with limited flexibility left for teachers' just‐in‐time instruction based on students' real‐time science practices.

    Objectives

    The goal of this research is to investigate the impact of a non‐centralized remote lab on students' cognitive and behavioural engagement.

    Methods

    A mixed‐methods design was adopted. Participants were the high school students enrolled in two virtual chemistry classes. Remote labs 2.0, branded as Telelab, supports a non‐centralized model of remote inquiry that can enact more interactive hands‐on labs anywhere, anytime. Teleinquiry Instructional Model was used to guide the curriculum design. Students' clickstreams logs and instruction timestamps were analysed and visualized. Multiple regression analysis was used to determine whether engagement levels influence their conceptual learning. Behavioural engagement patterns were corroborated with survey responses.

    Results and Conclusions

    We found approximate synchronizations between student–teacher–lab interactions in the heatmap. The guided inquiry enabled by Telelab facilitates real‐time communications between instructors and students. Students' conceptual learning is found to be impacted by varying engagement levels. Students' behavioural engagement patterns can be visualized and fed to instructors to inform learning progress and enact just‐in‐time instruction.

    Implications

    Telelab offers a model of remote labs 2.0 that can be easily customized to live stream hands‐on teleinquiry. It enhances engagement and gives participants a sense of telepresence. Providing a customizable teleinquiry curriculum for practitioners may better prepare them to teach inquiry‐based laboratories online.

     
    more » « less
  2. As K-12 engineering education becomes more ubiquitous in the U.S, increased attention has been paid to preparing the heterogeneous group of in-service teachers who have taken on the challenge of teaching engineering. Standards have emerged for professional development along with research on teacher learning in engineering that call for teachers to facilitate and support engineering learning environments. Given that many teachers may not have experienced engineering practice calls have been made to engage teaches K-12 teachers in the “doing” of engineering as part of their preparation. However, there is a need for research studying more specific nature of the “doing” and the instructional implications for engaging teachers in “doing” engineering. In general, to date, limited time and constrained resources necessitate that many professional development programs for K-12 teachers to engage participants in the same engineering activities they will enact with their students. While this approach supports teachers’ familiarity with curriculum and ability to anticipate students’ ideas, there is reason to believe that these experiences may not be authentic enough to support teachers in developing a rich understanding of the “doing” of engineering. K-12 teachers are often familiar with the materials and curricular solutions, given their experiences as adults, which means that engaging in the same tasks as their students may not be challenging enough to develop their understandings about engineering. This can then be consequential for their pedagogy: In our prior work, we found that teachers’ linear conceptions of the engineering design process can limit them from recognizing and supporting student engagement in productive design practices. Research on the development of engineering design practices with adults in undergraduate and professional engineering settings has shown significant differences in how adults approach and understand problems. Therefore, we conjectured that engaging teachers in more rigorous engineering challenges designed for adult engineering novices would more readily support their developing rich understandings of the ways in which professional engineers move through the design process. We term this approach meaningful engineering for teachers, and it is informed by work in science education that highlights the importance of learning environments creating a need for learners to develop and engage in disciplinary practices. We explored this approach to teachers’ professional learning experiences in doing engineering in an online graduate program for in-service teachers in engineering education at Tufts University entitled the Teacher Engineering Education Program (teep.tufts.edu). In this exploratory study, we asked: 1. How did teachers respond to engaging in meaningful engineering for teachers in the TEEP program? 2. What did teachers identify as important things they learned about engineering content and pedagogy? This paper focuses on one theme that emerged from teachers’ reflections. Our analysis found that teachers reported that meaningful engineering supported their development of epistemic empathy (“the act of understanding and appreciating someone's cognitive and emotional experience within an epistemic activity”) as a result of their own affective experiences in doing engineering that required significant iteration as well as using novel robotic materials. We consider how epistemic empathy may be an important aspect of teacher learning in K-12 engineering education and the potential implications for designing engineering teacher education. 
    more » « less
  3. This research paper describes a study of elementary teacher learning in an online graduate program in engineering education for in-service teachers. While the existing research on teachers in engineering focuses on their disciplinary understandings and beliefs (Hsu, Cardella, & Purzer, 2011; Martin, et al., 2015; Nadelson, et al., 2015; Van Haneghan, et al., 2015), there is increasing attention to teachers' pedagogy in engineering (Capobianco, Delisi, & Radloff, 2018). In our work, we study teachers' pedagogical sense-making and reflection, which, we argue, is critical for teaching engineering design. This study takes place in [blinded] program, in which teachers take four graduate courses over fifteen months. The program was designed to help teachers not only learn engineering content, but also shift their thinking and practice to be more responsive to their students. Two courses focus on pedagogy, including what it means to learn engineering and instructional approaches to support this learning. These courses consist of four main elements, in which teachers: 1) Read data-rich engineering education articles to reflect on learning engineering; 2) Participate in online video clubs, looking at classroom videos of students’ engineering and commenting on what they notice; 3) Conduct interviews with learners about the mechanism of a pull-back car; and 4) Plan and teach engineering lessons, collecting and analyzing video from their classrooms. In the context of this program, we ask: what stances do teachers take toward learning and teaching engineering design? What shifts do we observe in their stances? We interviewed teachers at the start of the program and after each course. In addition to reflecting on their learning and teaching, teachers watched videos of students’ engineering and discussed what they saw as relevant for teaching engineering. We informally compared summaries from previous interviews to get a sense of changes in how participants talked about engineering, how they approached teaching engineering, and what they noticed in classroom videos. Through this process, we identified one teacher to focus on for this paper: Alma is a veteran 3rd-5th grade science teacher in a rural, racially-diverse public school in the southeastern region of the US. We then developed content logs of Alma's interviews and identified emergent themes. To refine these themes, we looked for confirming and disconfirming evidence in the interviews and in her coursework in the program. We coded each interview for these themes and developed analytic memos, highlighting where we saw variability and stability in her stances and comparing across interviews to describe shifts in Alma's reasoning. It was at this stage that we narrowed our focus to her stances toward the engineering design process (EDP). In this paper, we describe and illustrate shifts we observed in Alma's reasoning, arguing that she exhibited dramatic shifts in her stances toward teaching and learning the EDP. At the start of the program, she was stable in treating the EDP as a series of linear steps that students and engineers progress through. After engaging and reflecting on her own engineering in the first course, she started to express a more fluid stance when talking more abstractly about the EDP but continued to take it up as a linear process in her classroom teaching. By the end of the program, Alma exhibited a growing stability across contexts in her stance toward the EDP as a fluid set of overlapping practices that students and engineers could engage in. 
    more » « less
  4. Abstract

    Physics labs provide a unique opportunity for students to grow their physics identity and science identity in general since they provide students with an opportunity to tinker with experiments and analyze data in a low-stakes environment. However, it is important to ensure that all students are benefiting from the labs equally and have a positive growth trajectory. Through interviews and reflexive ethnographic observations, we identify and analyze two common modes of work that may disadvantage female students in introductory physics labs. Students who adopt the Secretary archetype are relegated to recording and analyzing data, and thus may miss out on much of the opportunity to grow their physics and science identities by engaging fully in the experimental work. Meanwhile, students in the Hermione archetype shoulder a disproportionate amount of managerial work, and also may not get an adequate opportunity to engage with different aspects of the experimental work that is essential for helping them develop their physics and science identities. We use a physics identity framework to investigate how students under these modes of work may experience stunted growth in their physics and science identity trajectories in their physics lab course. This stunted growth can then perpetuate and reinforce societal stereotypes and biases about who does physics. Our categorization not only gives a vocabulary to discussions about equity in the physics lab, but may also serve as a useful touchstone for those who seek to center equity in efforts to transform physics instruction.

     
    more » « less
  5. Abstract

    Research exploring students’ learning from physical and virtual labs has suggested that on the whole, students learn science content just as well, if not better from virtual labs as they do from physical labs. However, the affordances of physical labs might support the learning of specific skills and competencies that are just as crucial for learning science. In this study, we examined students’ discussions as they worked on physical and virtual labs to better understand how they learned from each, and the kinds of learning that each type of lab supported. One hundred and fifteen 6th grade students from three science teachers’ classes participated in this study. We examined audio data from all available groups as they engaged in physical and virtual labs (n =14 groups; physical,n= 8 groups; virtual,n= 6 groups). We found that students conducting physical labs engaged in a significantly higher proportion of talk related to setting up apparatus and taking measurements and calculating outputs. Students who performed virtual labs, on the other hand, engaged in significantly more discussions about making predictions and understanding patterns of relationships between variables, and interpreting science phenomena. While students in the Virtual condition engaged in discussions that were more focused on the relationships between science ideas, students in the Physical condition learned science practices related to planning and carrying out investigations that are equally valuable. Our findings suggest that learning from one experimental modality may complement and supplement the relative weaknesses of the other, indicating a need for strategically combining the two. Implications and future directions are discussed.

     
    more » « less