skip to main content


Title: Diruthenium aryl compounds – tuning of electrochemical responses and solubility
Reported herein are the two new series of diruthenium aryl compounds: Ru 2 (DiMeOap) 4 (Ar) (1a–6a) (DiMeOap = 2-(3,5-dimethoxyanilino)pyridinate) and Ru 2 ( m - i PrOap) 4 (Ar) (1b–5b) ( m - i PrOap = 2-(3-iso-propoxyanilino)pyridinate), prepared through the lithium-halogen exchange reaction with a variety of aryl halides (Ar = C 6 H 4 -4-NMe 2 (1), C 6 H 4 -4- t Bu (2), C 6 H 4 -4-OMe (3), C 6 H 3 -3,5-(OMe) 2 (4), C 6 H 4 -4-CF 3 (5), C 6 H 5 (6)). The molecular structures of these compounds were established with X-ray diffraction studies. Additionally, these compounds were characterized using electronic absorption and voltammetric techniques. Compounds 1a–6a and 1b–5b are all in the Ru 2 5+ oxidation state, with a ground state configuration of σ 2 π 4 δ 2 (π*δ*) 3 ( S = 3/2). Use of the modified ap ligands (ap′) resulted in moderate increases of product yield when compared to the unsubstituted Ru 2 (ap) 4 (Ar) (ap = 2-anilinopyridinate) series. Comparisons of the electrochemical properties of 1a–6a and 1b–5b against the Ru 2 (ap′)Cl starting material reveals the addition of the aryl ligand cathodically shifted the Ru 2 6+/5+ oxidation and Ru 2 5+/4+ reduction potentials. These oxidation and reductions potentials are also strongly dependent on the p -substituent of the axial aryl ligands.  more » « less
Award ID(s):
2102049 1764347
NSF-PAR ID:
10324988
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
51
Issue:
2
ISSN:
1477-9226
Page Range / eLocation ID:
580 to 586
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cationic gold vinyl carbene/allylic cation complexes of the form ( E )-[(L)AuC(H)C(H)CAr 2 ] + OTf − {L = IPr, Ar = Ph [( E )- 5a ], L = IPr, Ar = 4-C 6 H 4 OMe [( E )- 5b ], L = P( t -Bu) 2 o -biphenyl, Ar = 4-C 6 H 4 OMe [( E )- 5c ]} were generated in solution via Lewis acid-mediated ionization of the corresponding gold (γ-methoxy)vinyl complexes ( E )-(L)AuC(H)C(H)C(OMe)Ar 2 at or below −95 °C. Complexes ( E )- 5b and ( E )- 5c were fully characterized in solution employing multinuclear NMR spectroscopy, which established the predominant contribution of the aurated allylic cation resonance structure and the significant distribution of positive charge into the γ-anisyl rings. Complex ( E )- 5b reacted rapidly at −95 °C with neutral two-electron, hydride, and oxygen atom donors exclusively at the C1 position of the vinyl carbene moiety and with p -methoxystyrene to form the corresponding vinylcyclopropane. In the absence of nucleophile ( E )- 5a decomposed predominantly via intermolecular carbene dimerization whereas formation of 1-aryl-5-methoxy indene upon ionization of ( Z )-(IPr)AuC(H)C(H)C(OMe)(4-C 6 H 4 OMe) 2 [( Z )- 6b ] implicated an intramolecular Friedel–Crafts or electrocyclic Nazarov pathway for the decomposition of the unobserved vinyl carbene complex ( Z )-[(IPr)AuC(H)C(H)C(4-C 6 H 4 OMe) 2 ] + OTf − [( Z )- 5b ]. 
    more » « less
  2. null (Ed.)
    Described herein is the synthesis and characterization of macrocyclic Cr III mono-alkynyl complexes. By using the meso -form of the tetraazamacrocycle HMC (HMC = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane), trans -[Cr(HMC)(C 2 Ph)Cl]OTf ( 1a ), trans -[Cr(HMC)(C 2 Np)Cl]OTf ( 2a ), trans -[Cr(HMC)(C 2 C 6 H 4 t Bu)Cl]OTf ( 3a ), and trans -[Cr(HMC)(C 2 (3,5-Cl 2 C 6 H 3 ))Cl]OTf ( 4a ) complexes have been realized. These complexes were synthesized in high yield through the reaction of trans -[Cr( meso -HMC)(C 2 Ar) 2 ]OTf ( 1b–4b ) with stoichiometric amounts of methanolic HCl. Single crystal X-ray diffraction showed that the trans -stereochemistry and pseudo-octahedral geometry is retained in the desired mono-alkynyl complexes. The absorption spectra of complexes 1a–4a display d–d bands with distinct vibronic progressions that are slightly red shifted from trans -[Cr(HMC)(C 2 Ar) 2 ] + with approximately halved molar extinction coefficients. Time-delayed measurements of the emission spectra for complexes 1a–4a at 77 K revealed phosphorescence with lifetimes ranging between 343 μs ( 4a ) and 397 μs ( 1a ). The phosphorescence spectra of 1a–4a also exhibit more structuring than the bis-alkynyl complexes due to a strengthened vibronic coupling between the Cr III metal center and alkynyl ligands. 
    more » « less
  3. null (Ed.)
    Salt metathesis reactions between a low-valent rhenium( i ) complex, Na[Re(η 5 -Cp)(BDI)] (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate), and a series of amidinate-supported tetrylenes of the form ECl[PhC(N t Bu) 2 ] (E = Si, Ge, Sn) led to rhenium metallotetrylenes Re(E[PhC(N t Bu) 2 ])(η 5 -Cp)(BDI) (E = Si ( 1a ), Ge ( 2 ), Sn ( 4 )) with varying extents of Re–E multiple bonding. Whereas the rhenium–stannylene 4 adopts a σ-metallotetrylene arrangement featuring a Re–E single bond, the rhenium–silylene ( 1a ) and –germylene ( 2 ) both engage in π-interactions to form short Re–E multiple bonds. Temperature was found to play a crucial role in reactions between Na[Re(η 5 -Cp)(BDI)] and SiCl[PhC(N t Bu) 2 ], as manipulation of reaction conditions led to isolation of an unusual rhenium–silane, (BDI)Re(μ-η 5 :η 1 -C 5 H 4 )(SiH[PhC(N t Bu) 2 ]) ( 1b ) and a dinitrogen bridged rhenium–silylene, (η 5 -Cp)(BDI)Re(μ-N 2 )Si[PhC(N t Bu) 2 ] ( 1c ), in addition to 1a . Finally, the reaction of Na[Re(η 5 -Cp)(BDI)] with GeCl 2 ·dioxane led to a rare μ 2 -tetrelido complex, μ 2 -Ge[Re(η 5 -Cp)(BDI)] 2 ( 3 ). Bonding interactions within these complexes are discussed through the lens of various spectroscopic, structural, and computational investigations. 
    more » « less
  4. null (Ed.)
    Copper(I) iodide complexes are well known for displaying a diverse array of structural features even when only small changes in ligand design are made. This structural diversity is well displayed by five copper(I) iodide compounds reported here with closely related piperidine-2,6-dithione (SNS), isoindoline-1,3-dithione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands: di-μ-iodido-bis[(acetonitrile-κ N )(6-sulfanylidenepiperidin-2-one-κ S )copper(I)], [Cu 2 I 2 (CH 3 CN) 2 (C 5 H 7 NOS) 2 ] ( I ), bis(acetonitrile-κ N )tetra-μ 3 -iodido-bis(6-sulfanylidenepiperidin-2-one-κ S )- tetrahedro -tetracopper(I), [Cu 4 I 4 (CH 3 CN) 4 (C 5 H 7 NOS) 4 ] ( II ), catena -poly[[(μ-6-sulfanylidenepiperidin-2-one-κ 2 O : S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NOS)] n ( III ), poly[[(piperidine-2,6-dithione-κ S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NS 2 )] n ( IV ), and poly[[(μ-isoindoline-1,3-dithione-κ 2 S : S )copper(I)]-μ 3 -iodido], [CuI(C 8 H 5 NS 2 )] n ( V ). Compounds I and II crystallize as discrete dimeric and tetrameric complexes, whereas III , IV , and V crystallize as polymeric two-dimensional sheets. To the best of our knowledge, compound III is the first instance of an extended hexagonal [Cu 3 I 3 ] structure that is not supported by bridging ligands. Structures I , II , and IV display weak to moderately strong Cu...Cu cuprophilic interactions [Cu...Cu internuclear distances range between 2.5803 (10) and 2.8485 (14) Å]. All structures except III display weak hydrogen-bonding interactions between the N—H of the ligand and the μ 2 and μ 3 -I − atoms. Structure III contains classical N–H...O interactions between the SNO ligands that connect the molecules in a three-dimensional framework. Complex V features π–π stacking interactions between the aryl rings of the SNS6 ligands within the same polymeric sheet. In structure IV , there were three partially occupied solvent molecules of dichloromethane and one partially occupied molecule of acetonitrile present in the asymmetric unit. The SQUEEZE routine [Spek (2015). Acta Cryst . C 71 , 9–18] was used to correct the diffraction data for diffuse scattering effects and to identify the solvent molecules. The given chemical formula and other crystal data do not take into account the solvent molecules. 
    more » « less
  5. The bis(aminophenol) 2,2′-biphenylbis(3,5-di- tert -butyl-2-hydroxyphenylamine) (ClipH 4 ) forms trans -(Clip)Os(py) 2 upon aerobic reaction of the ligand with {( p -cymene)OsCl 2 } 2 in the presence of pyridine and triethylamine. A more oxidized species, cis -β-(Clip)Os(OCH 2 CH 2 O), is formed from reaction of the ligand with the osmium( vi ) complex OsO(OCH 2 CH 2 O) 2 , and reacts with Me 3 SiCl to give the chloro complex cis -β-(Clip)OsCl 2 . Octahedral osmium and ruthenium tris-iminoxolene complexes are formed from the chelating ligand tris(2-(3′,5′-di- tert -butyl-2′-hydroxyphenyl)amino-4-methylphenyl)amine (MeClampH 6 ) on aerobic reaction with divalent metal precursors. The complexes’ structural and electronic features are well described using a simple bonding model that emphasizes the covalency of the π bonding between the metal and iminoxolene ligands rather than attempting to dissect the parts into discrete oxidation states. Emphasizing the continuity of bonding between disparate complexes, the structural data from a variety of Os and Ru complexes show good correlations to π bond order, and the response of the intraligand bond distances to the bond order can be analyzed to illuminate the polarity of the bonding between metal and the redox-active orbital on the iminoxolenes. The osmium compounds’ π bonding orbitals are about 40% metal-centered and 60% ligand-centered, with the ruthenium compounds’ orbitals about 65% metal-centered and 35% ligand-centered. 
    more » « less