skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diruthenium aryl compounds – tuning of electrochemical responses and solubility
Reported herein are the two new series of diruthenium aryl compounds: Ru 2 (DiMeOap) 4 (Ar) (1a–6a) (DiMeOap = 2-(3,5-dimethoxyanilino)pyridinate) and Ru 2 ( m - i PrOap) 4 (Ar) (1b–5b) ( m - i PrOap = 2-(3-iso-propoxyanilino)pyridinate), prepared through the lithium-halogen exchange reaction with a variety of aryl halides (Ar = C 6 H 4 -4-NMe 2 (1), C 6 H 4 -4- t Bu (2), C 6 H 4 -4-OMe (3), C 6 H 3 -3,5-(OMe) 2 (4), C 6 H 4 -4-CF 3 (5), C 6 H 5 (6)). The molecular structures of these compounds were established with X-ray diffraction studies. Additionally, these compounds were characterized using electronic absorption and voltammetric techniques. Compounds 1a–6a and 1b–5b are all in the Ru 2 5+ oxidation state, with a ground state configuration of σ 2 π 4 δ 2 (π*δ*) 3 ( S = 3/2). Use of the modified ap ligands (ap′) resulted in moderate increases of product yield when compared to the unsubstituted Ru 2 (ap) 4 (Ar) (ap = 2-anilinopyridinate) series. Comparisons of the electrochemical properties of 1a–6a and 1b–5b against the Ru 2 (ap′)Cl starting material reveals the addition of the aryl ligand cathodically shifted the Ru 2 6+/5+ oxidation and Ru 2 5+/4+ reduction potentials. These oxidation and reductions potentials are also strongly dependent on the p -substituent of the axial aryl ligands.  more » « less
Award ID(s):
2102049 1764347
PAR ID:
10324988
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
51
Issue:
2
ISSN:
1477-9226
Page Range / eLocation ID:
580 to 586
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cationic gold vinyl carbene/allylic cation complexes of the form ( E )-[(L)AuC(H)C(H)CAr 2 ] + OTf − {L = IPr, Ar = Ph [( E )- 5a ], L = IPr, Ar = 4-C 6 H 4 OMe [( E )- 5b ], L = P( t -Bu) 2 o -biphenyl, Ar = 4-C 6 H 4 OMe [( E )- 5c ]} were generated in solution via Lewis acid-mediated ionization of the corresponding gold (γ-methoxy)vinyl complexes ( E )-(L)AuC(H)C(H)C(OMe)Ar 2 at or below −95 °C. Complexes ( E )- 5b and ( E )- 5c were fully characterized in solution employing multinuclear NMR spectroscopy, which established the predominant contribution of the aurated allylic cation resonance structure and the significant distribution of positive charge into the γ-anisyl rings. Complex ( E )- 5b reacted rapidly at −95 °C with neutral two-electron, hydride, and oxygen atom donors exclusively at the C1 position of the vinyl carbene moiety and with p -methoxystyrene to form the corresponding vinylcyclopropane. In the absence of nucleophile ( E )- 5a decomposed predominantly via intermolecular carbene dimerization whereas formation of 1-aryl-5-methoxy indene upon ionization of ( Z )-(IPr)AuC(H)C(H)C(OMe)(4-C 6 H 4 OMe) 2 [( Z )- 6b ] implicated an intramolecular Friedel–Crafts or electrocyclic Nazarov pathway for the decomposition of the unobserved vinyl carbene complex ( Z )-[(IPr)AuC(H)C(H)C(4-C 6 H 4 OMe) 2 ] + OTf − [( Z )- 5b ]. 
    more » « less
  2. null (Ed.)
    Described herein is the synthesis and characterization of macrocyclic Cr III mono-alkynyl complexes. By using the meso -form of the tetraazamacrocycle HMC (HMC = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane), trans -[Cr(HMC)(C 2 Ph)Cl]OTf ( 1a ), trans -[Cr(HMC)(C 2 Np)Cl]OTf ( 2a ), trans -[Cr(HMC)(C 2 C 6 H 4 t Bu)Cl]OTf ( 3a ), and trans -[Cr(HMC)(C 2 (3,5-Cl 2 C 6 H 3 ))Cl]OTf ( 4a ) complexes have been realized. These complexes were synthesized in high yield through the reaction of trans -[Cr( meso -HMC)(C 2 Ar) 2 ]OTf ( 1b–4b ) with stoichiometric amounts of methanolic HCl. Single crystal X-ray diffraction showed that the trans -stereochemistry and pseudo-octahedral geometry is retained in the desired mono-alkynyl complexes. The absorption spectra of complexes 1a–4a display d–d bands with distinct vibronic progressions that are slightly red shifted from trans -[Cr(HMC)(C 2 Ar) 2 ] + with approximately halved molar extinction coefficients. Time-delayed measurements of the emission spectra for complexes 1a–4a at 77 K revealed phosphorescence with lifetimes ranging between 343 μs ( 4a ) and 397 μs ( 1a ). The phosphorescence spectra of 1a–4a also exhibit more structuring than the bis-alkynyl complexes due to a strengthened vibronic coupling between the Cr III metal center and alkynyl ligands. 
    more » « less
  3. The importance of electron deficient Tp ligands motivates the introduction of electron-withdrawing substituents into the scorpionate framework. Since perfluorophenyltris(pyrazol-1-yl)borate affects significant anodic shifts in half-cell potentials in their metal complexes relative those of phenyltris(pyrazol-1-yl)borate analogues, the tuning opportunities achieved using 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates were explored. Bis(amino)boranes ((3,4,5-F)C 6 H 2 )B(NMe 2 ) 2 and ((3,5-CF 3 )C 6 H 3 )B(NMe 2 ) 2 are precursors to fluorinated tris(pyrazol-1-yl)phenylborates. Thallium salts of these scorpionates exhibit bridging asymmetric κ 3 - N , N , N coordination modes consistent with the reduced π-basicity of the fluorinated phenyl substituents relative those of other structurally characterized tris(pyrazol-1-yl)phenylborates. While a comparative analysis of the spectral and X-ray crystallographic data for classical Mo(0), Mo( ii ), Mn( i ), Fe( ii ) and Cu( ii ) complexes of [((3,4,5-F)C 6 H 2 )Bpz 3 ] − and [((3,5-CF 3 )C 6 H 3 )Bpz 3 ] − could not differentiate these ligands with respect to their metal-based electronic impacts, cyclic voltammetry suggests that 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates affect similar anodic shifts within their metal complexes, with coordination of [((3,5-CF 3 )C 6 H 3 )Bpz 3 ] − rendering metal centers more difficult to oxidize, and sometimes even more difficult to oxidize than their [C 6 F 5 Bpz 3 ] − analogues. These data suggest that the extent of phenyl substituent fluorination necessary to minimize metal center electron-richness in phenyltris(pyrazol-1-yl)borate complexes cannot be confidently predicted. 
    more » « less
  4. null (Ed.)
    Copper(I) iodide complexes are well known for displaying a diverse array of structural features even when only small changes in ligand design are made. This structural diversity is well displayed by five copper(I) iodide compounds reported here with closely related piperidine-2,6-dithione (SNS), isoindoline-1,3-dithione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands: di-μ-iodido-bis[(acetonitrile-κ N )(6-sulfanylidenepiperidin-2-one-κ S )copper(I)], [Cu 2 I 2 (CH 3 CN) 2 (C 5 H 7 NOS) 2 ] ( I ), bis(acetonitrile-κ N )tetra-μ 3 -iodido-bis(6-sulfanylidenepiperidin-2-one-κ S )- tetrahedro -tetracopper(I), [Cu 4 I 4 (CH 3 CN) 4 (C 5 H 7 NOS) 4 ] ( II ), catena -poly[[(μ-6-sulfanylidenepiperidin-2-one-κ 2 O : S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NOS)] n ( III ), poly[[(piperidine-2,6-dithione-κ S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NS 2 )] n ( IV ), and poly[[(μ-isoindoline-1,3-dithione-κ 2 S : S )copper(I)]-μ 3 -iodido], [CuI(C 8 H 5 NS 2 )] n ( V ). Compounds I and II crystallize as discrete dimeric and tetrameric complexes, whereas III , IV , and V crystallize as polymeric two-dimensional sheets. To the best of our knowledge, compound III is the first instance of an extended hexagonal [Cu 3 I 3 ] structure that is not supported by bridging ligands. Structures I , II , and IV display weak to moderately strong Cu...Cu cuprophilic interactions [Cu...Cu internuclear distances range between 2.5803 (10) and 2.8485 (14) Å]. All structures except III display weak hydrogen-bonding interactions between the N—H of the ligand and the μ 2 and μ 3 -I − atoms. Structure III contains classical N–H...O interactions between the SNO ligands that connect the molecules in a three-dimensional framework. Complex V features π–π stacking interactions between the aryl rings of the SNS6 ligands within the same polymeric sheet. In structure IV , there were three partially occupied solvent molecules of dichloromethane and one partially occupied molecule of acetonitrile present in the asymmetric unit. The SQUEEZE routine [Spek (2015). Acta Cryst . C 71 , 9–18] was used to correct the diffraction data for diffuse scattering effects and to identify the solvent molecules. The given chemical formula and other crystal data do not take into account the solvent molecules. 
    more » « less
  5. Treatment of the gold vinyl carbene/allylic cation complex ( E )-[(IPr)AuC(H)C(H)C(4-C 6 H 4 OMe) 2 ] + OTf − with sulfoxides at −95 °C formed the corresponding gold allyloxysulfonium complexes [(IPr)AuC(H)(OSR 2 )C(H)C(4-C 6 H 4 OMe) 2 ] + OTf − [R = Me, –(CH 2 ) 4 –, Ar] in ≥95 ± 5% NMR yield. Allyloxysulfonium gold complexes underwent elimination at or below room temperature to form 3,3-bis(4-methoxyphenyl)acrylaldehyde in ≥67% yield. 
    more » « less