skip to main content

Title: Water-Use Efficiency of Co-occurring Sky-Island Pine Species in the North American Great Basin
Water-use efficiency (WUE), weighing the balance between plant transpiration and growth, is a key characteristic of ecosystem functioning and a component of tree drought resistance. Seasonal dynamics of tree-level WUE and its connections with drought variability have not been previously explored in sky-island montane forests. We investigated whole-tree transpiration and stem growth of bristlecone ( Pinus longaeva ) and limber pine ( Pinus flexilis ) within a high-elevation stand in central-eastern Nevada, United States, using sub-hourly measurements over 5 years (2013–2017). A moderate drought was generally observed early in the growing season, whereas interannual variability of summer rains determined drought levels between years, i.e., reducing drought stress in 2013–2014 while enhancing it in 2015–2017. Transpiration and basal area increment (BAI) of both pines were coupled throughout June–July, resulting in a high but relatively constant early season WUE. In contrast, both pines showed high interannual plasticity in late-season WUE, with a predominant role of stem growth in driving WUE. Overall, bristlecone pine was characterized by a lower WUE compared to limber pine. Dry or wet episodes in the late growing season overrode species differences. Our results suggested thresholds of vapor pressure deficit and soil moisture that would lead to opposite responses more » of WUE to late-season dry or wet conditions. These findings provide novel insights and clarify potential mechanisms modulating tree-level WUE in sky-island ecosystems of semi-arid regions, thereby helping land managers to design appropriate science-based strategies and reduce uncertainties associated with the impact of future climatic changes. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Frontiers in Plant Science
Sponsoring Org:
National Science Foundation
More Like this
  1. Information on wildfire impacts and ecosystem responses is relatively sparse in the Great Basin of North America, where subalpine ecosystems are generally dominated by five-needle pines. We analyzed existing vegetation, with an emphasis on regeneration following the year 2000 Phillips Ranch Fire, at a sky-island site in the Snake Range of eastern Nevada. Our main objective was to compare bristlecone pine (Pinus longaeva; PILO) post-fire establishment and survival to that of the co-occurring dominant conifers limber pine (Pinus flexilis; PIFL) and Engelmann spruce (Picea engelmannii; PIEN) in connection with site characteristics. Field data were collected in 40 circular 0.1 ha plots (17.8 m radius) randomly located using GIS so that half of them were inside (“burned”) and half were outside (“unburned”) the 2000 fire boundary. While evidence of previous burns was also found, we focused on impacts from the Phillips Ranch Fire. Mean total basal area, including live and dead stems, was not significantly different between plots inside the burn and plots outside the fire perimeter, but the live basal area was significantly less in the former than in the latter. Wildfire impacts did not limit regeneration, and indeed bristlecone seedlings and saplings were more abundant in plots inside themore »2000 fire perimeter than in those outside of it. PILO regeneration, especially saplings, was more abundant than PIFL and PCEN combined, indicating that PILO can competitively regenerate under modern climatic conditions. Surviving PILO regeneration in burned plots was also taller than that of PIFL. By contrast, PCEN was nearly absent in the plots that had been impacted by fire. Additional research should explicitly address how climatic changes and disturbance processes may interact in shaping future vegetation dynamics.« less
  2. Internal water storage within trees can be a critical reservoir that helps trees overcome both short- and long-duration environmental stresses. We monitored changes in internal tree water storage in a ponderosa pine on daily and seasonal scales using moisture probes, a dendrometer, and time-lapse electrical resistivity imaging (ERI). These data were used to investigate how patterns of in-tree water storage are affected by changes in sapflow rates, soil moisture, and meteorologic factors such as vapor pressure deficit. Measurements of xylem fluid electrical conductivity were constant in the early growing season while inverted sapwood electrical conductivity steadily increased, suggesting that increases in sapwood electrical conductivity did not result from an increase in xylem fluid electrical conductivity. Seasonal increases in stem electrical conductivity corresponded with seasonal increases in trunk diameter, suggesting that increased electrical conductivity may result from new growth. On the daily scale, changes in inverted sapwood electrical conductivity correspond to changes in sapwood moisture. Wavelet analyses indicated that lag times between inverted electrical conductivity and sapflow increased after storm events, suggesting that as soils wetted, reliance on internal water storage decreased, as did the time required to refill daily deficits in internal water storage. We found short time lags betweenmore »sapflow and inverted electrical conductivity with dry conditions, when ponderosa pine are known to reduce stomatal conductance to avoid xylem cavitation. A decrease in diel amplitudes of inverted sapwood electrical conductivity during dry periods suggest that the ponderosa pine relied on internal water storage to supplement transpiration demands, but as drought conditions progressed, tree water storage contributions to transpiration decreased. Time-lapse ERI- and wavelet-analysis results highlight the important role internal tree water storage plays in supporting transpiration throughout a day and during periods of declining subsurface moisture.« less
  3. Abstract. Mountain pine beetle (MPB) outbreaks in the western United States result inwidespread tree mortality, transforming forest structure within watersheds.While there is evidence that these changes can alter the timing and quantity of streamflow, there is substantial variation in both the magnitude and direction of hydrologic responses, and the climatic and environmental mechanisms driving this variation are not well understood. Herein, we coupled an eco-hydrologic model (RHESSys) with a beetle effects model and applied it to a semiarid watershed, Trail Creek, in the Bigwood River basin in central Idaho, USA, to examine how varying degrees of beetle-caused tree mortality influence water yield. Simulation results show that water yield during the first 15 years after beetle outbreak is controlled by interactions between interannual climate variability, the extent of vegetation mortality, and long-term aridity. During wet years, water yield after a beetle outbreak increased with greater tree mortality; this was driven by mortality-caused decreases in evapotranspiration. During dry years, water yield decreased at low-to-medium mortality but increased at high mortality. The mortality threshold for the direction of change was location specific. The change in water yield also varied spatially along aridity gradients during dry years. In wetter areas of the Trail Creek basin, post-outbreak watermore »yield decreased at low mortality (driven by an increase in ground evaporation) and increased when vegetation mortality was greater than 40 % (driven by a decrease in canopy evaporation and transpiration). In contrast, in more water-limited areas, water yield typically decreased after beetle outbreaks, regardless of mortality level (although the driving mechanisms varied). Our findings highlight the complexity and variability of hydrologic responses and suggest that long-term (i.e., multi-decadal mean) aridity can be a useful indicator for the direction of water yield changes after a disturbance.« less
  4. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  5. Our objective was to examine broadly the climate–growth responses of longleaf pine (Pinus palustris Mill.) on the Coastal Plain province of North and South Carolina to temperature, precipitation, and drought severity. We compared the responses between standardized earlywood, latewood, adjusted latewood, and totalwood radial tree growth. We sampled mature longleaf pine growing in open-canopy savanna environments and developed six tree-ring chronologies using standard dendroecological techniques. We used a combination of Pearson correlation, moving interval correlation, and Fisher r–z tests to determine which monthly and seasonal variables were most closely related to radial growth, the temporal stability of the dominant growth/climate relationship, and whether earlywood and latewood growth provide signifcantly diferent climate responses. Our results show that the strongest relationships with climate are with adjusted latewood growth and that rainfall in the later parts of the growing season (i.e., July–September) is the primary control of radial growth. Spatially, we found that growth/climate responses were similar throughout the Coastal Plain region encompassing the six study sites. Temporally, we found that July–September precipitation produced signifcant (p<0.05) relationships with radial growth for extended annual intervals, but there were shorter periods when this relationship was non-signifcant. In general, growth/ climate relationships were stronger for latewoodmore »compared to earlywood, and these responses were signifcantly (p<0.05) diferent at about half of our study sites. Our fndings are congruent with prior research in this region showing that shortduration precipitation events are a critical component for radial growth. Further, these results emphasize the importance of latewood growth—particularly adjusted latewood growth—in capturing interannual climate/growth responses.« less