skip to main content


Title: Mechanical performance of collagen gels is dependent on purity, α1/α2 ratio, and telopeptides
Abstract

This article describes the compositional, mechanical, and structural differences between collagen gels fabricated from different sources and processing methods. Despite extensive use of collagen in the manufacturing of biomaterials and implants, there is little information as to the variation in properties based on collagen source or processing methods. As such, differences in purity and composition may affect gel structure and mechanical performance. Using mass spectrometry, we assessed protein composition of collagen from seven different sources. The mechanics and gelation kinetics of each gel were assessed through oscillatory shear rheology. Scanning electron microscopy enabled visualization of distinct differences in fiber morphology. Mechanics and gelation kinetics differed with source and processing method and were found to correlate with differences in composition. Gels fabricated from telopeptide‐containing collagens had higher storage modulus (144 vs. 54 Pa) and faster gelation (251 vs. 734 s) compared to atelocollagens, despite having lower purity (93.4 vs. 99.8%). For telopeptide‐containing collagens, as collagen purity increased, storage modulus increased and fiber diameter decreased. As α1/α2 chain ratio increased, fiber diameter increased and gelation slowed. As such, this study provides an examination of the effects of collagen processing on key quality attributes for use of collagen gels in biomedical contexts.

 
more » « less
Award ID(s):
1719875
NSF-PAR ID:
10362213
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part A
Volume:
110
Issue:
1
ISSN:
1549-3296
Page Range / eLocation ID:
p. 11-20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this study, an in situ forming corneal stromal substitute based on collagen type I crosslinked by bio‐orthogonal strain‐promoted azide–alkyne cycloaddition (SPAAC) is presented. The crosslinked collagen gel has greater transparency compared to non‐crosslinked collagen gels. The mechanical properties of the gels are controlled by changing functional group ratios and conjugated collagen concentrations. Higher concentrations of conjugated collagen yield enhances mechanical properties, where the storage modulus increases from 42.39 ± 8.95 to 112.03 ± 3.94 Pa after SPAAC crosslinking. Encapsulated corneal keratocytes grow within the SPAAC‐crosslinked gels and corneal keratinocytes are supported on top of the gel surfaces. SPAAC‐crosslinked gels support more favorable and stable keratinocyte morphology on their surface compared to non‐crosslinked gels likely as a result of more optimal substrate stiffness, gel integrity, and resistance to degradation. SPAAC‐crosslinked collagen gels with and without encapsulated keratocytes applied to rabbit corneas in an organ culture model after keratectomy exhibit surface epithelialization with multilayered morphology. The novel in situ forming gel is a promising candidate for lamellar and defect reconstruction of corneal stromal tissue.

     
    more » « less
  2. Despite hundreds of studies involving slide-ring gels derived from cyclodextrin (CD)-based polyrotaxanes (PRs), their covalent cross-linking kinetics are not well characterized. We employ chemorheology as a tool to measure the gelation kinetics of a model slide-ring organogel derived from α -cyclodextrin/poly (ethylene glycol) PRs cross-linked with hexamethylenediisocyanate (HMDI) in DMSO. The viscoelastic properties of the gels were monitored in situ by small-amplitude oscillatory shear (SAOS) rheology, enabling us to estimate the activation barrier and rate law for cross-linking while mapping experimental parameters to kinetics and mechanical properties. Gelation time, gel point, and final gel elasticity depend on cross-linker concentration, but polyrotaxane concentration only affects gelation time and elasticity (not gel point), while temperature only affects gelation time and gel point (not final elasticity). These measurements facilitate the rational design of slide-ring networks by simple parameter selection (temperature, cross-linker concentration, PR concentration, reaction time). 
    more » « less
  3. null (Ed.)
    Background Volumetric tissue-engineered constructs are limited in development due to the dependence on well-formed vascular networks. Scaffold pore size and the mechanical properties of the matrix dictates cell attachment, proliferation and successive tissue morphogenesis. We hypothesize scaffold pore architecture also controls stromal-vessel interactions during morphogenesis. Methods The interaction between mesenchymal stem cells (MSCs) seeded on hydroxyapatite scaffolds of 450, 340, and 250 μm pores and microvascular fragments (MVFs) seeded within 20 mg/mL fibrin hydrogels that were cast into the cell-seeded scaffolds, was assessed in vitro over 21 days and compared to the fibrin hydrogels without scaffold but containing both MSCs and MVFs. mRNA sequencing was performed across all groups and a computational mechanics model was developed to validate architecture effects on predicting vascularization driven by stiffer matrix behavior at scaffold surfaces compared to the pore interior. Results Lectin staining of decalcified scaffolds showed continued vessel growth, branching and network formation at 14 days. The fibrin gel provides no resistance to spread-out capillary networks formation, with greater vessel loops within the 450 μm pores and vessels bridging across 250 μm pores. Vessel growth in the scaffolds was observed to be stimulated by hypoxia and successive angiogenic signaling. Fibrin gels showed linear fold increase in VEGF expression and no change in BMP2. Within scaffolds, there was multiple fold increase in VEGF between days 7 and 14 and early multiple fold increases in BMP2 between days 3 and 7, relative to fibrin. There was evidence of yap/taz based hippo signaling and mechanotransduction in the scaffold groups. The vessel growth models determined by computational modeling matched the trends observed experimentally. Conclusion The differing nature of hypoxia signaling between scaffold systems and mechano-transduction sensing matrix mechanics were primarily responsible for differences in osteogenic cell and microvessel growth. The computational model implicated scaffold architecture in dictating branching morphology and strain in the hydrogel within pores in dictating vessel lengths. 
    more » « less
  4. null (Ed.)
    Purpose To develop a novel model composed solely of Col I and Col III with the lower and upper limits set to include the ratios of Col I and Col III at 3:1 and 9:1 in which the structural and mechanical behavior of the resident CM can be studied. Further, the progression of fibrosis due to change in ratios of Col I:Col III was tested. Methods Collagen gels with varying Col I:Col III ratios to represent a healthy (3:1) and diseased myocardial tissue were prepared by manually casting them in wells. Absorbance assay was performed to confirm the gelation of the gels. Rheometric analysis was performed on each of the collagen gels prepared to determine the varying stiffnesses and rheological parameters of the gels made with varying ratios of Col I:Col III. Second Harmonic Generation (SHG) was performed to observe the 3D characterization of the collagen samples. Scanning Electron microscopy was used for acquiring cross sectional images of the lyophilized collagen gels. AC16 CM (human) cell lines were cultured in the prepared gels to study cell morphology and behavior as a result of the varying collagen ratios. Cellular proliferation was studied by performing a Cell Trace Violet Assay and the applied force on each cell was measured by means of Finite Element Analysis (FEA) on CM from each sample. Results Second harmonic generation microscopy used to image Col I, displayed a decrease in acquired image intensity with an increase in the non-second harmonic Col III in 3:1 gels. SEM showed a fiber-rich structure in the 3:1 gels with well-distributed pores unlike the 9:1 gels or the 1:0 controls. Rheological analysis showed a decrease in substrate stiffness with an increase of Col III, in comparison with other cases. CM cultured within 3:1 gels exhibited an elongated rod-like morphology with an average end-to-end length of 86 ± 28.8 µm characteristic of healthy CM, accompanied by higher cell growth in comparison with other cases. Finite element analysis used to estimate the forces exerted on CM cultured in the 3:1 gels, showed that the forces were well dispersed, and not concentrated within the center of cells, in comparison with other cases. Conclusion This study model can be adopted to simulate various biomechanical environments in which cells crosstalk with the Collagen-matrix in diseased pathologies to generate insights on strategies for prevention of fibrosis. 
    more » « less
  5. Abstract

    Extracellular-matrix composition impacts mechanical performance in native and engineered tissues. Previous studies showed collagen type I-agarose blends increased cell-matrix interactions and extracellular matrix production. However, long-term impacts on protein production and mechanical properties of engineered cartilage are unknown. Our objective was to characterize the effect of collagen type I on the matrix production of chondrocytes embedded in agarose hydrogels. We hypothesized that the addition of collagen would improve long-term mechanical properties and matrix production (e.g. collagen and glycosaminoglycans) through increased bioactivity. Agarose hydrogels (2% w/v) were mixed with varying concentrations of collagen type I (0, 2 and 5 mg/ml). Juvenile bovine chondrocytes were added to the hydrogels to assess matrix production over 4 weeks through biochemical assays, and mechanical properties were assessed through unconfined compression. We observed a dose-dependent effect on cell bioactivity, where 2 mg/ml of collagen improved bioactivity, but 5 mg/ml had a negative impact on bioactivity. This resulted in a higher modulus for scaffolds supplemented with lower collagen concentration as compared to the higher collagen concentration, but not when compared to the control. In conclusion, the addition of collagen to agarose constructs provided a dose-dependent impact on improving glycosaminoglycan production but did not improve collagen production or compressive mechanics.

     
    more » « less