skip to main content


Title: Harnessing near-infrared light via S 0 to T 1 sensitizer excitation in a molecular photon upconversion solar cell
Integrating molecular photon upconversion via triplet–triplet annihilation (TTA-UC) directly into a solar cell offers a means of harnessing sub-bandgap, near infrared (NIR) photons and surpassing the Shockley–Queisser limit. However, all integrated TTA-UC solar cells to date only harness visible light. Here, we incorporate an osmium polypyridal complex (Os) as the triplet sensitizer in a metal ion linked multilayer photoanode that is capable of harnessing NIR light via S 0 to T 1 * excitation, triple energy transfer to a phosphonated bis(9,10-diphenylethynyl)anthracene annihilator (A), TTA-UC, and electron injection into TiO 2 from the upcoverted state. The TiO 2 -A-Zn-Os devices have five-fold higher photocurrent (∼3.5 μA cm −2 ) than the sum of their parts. IPCE data and excitation intensity dependent measurements indicate that the NIR photons are harvested through a TTA-UC mechanism. Transient absorption spectroscopy is used to show that the low photocurrent, as compared to visible light harnessing TTA-UC solar cells, can be atributed to: (1) slow sensitizer to annihilator triplet energy transfer, (2) a low injection yield for the annihilator, and (3) fast back energy transfer from the upconverted state to the sensitizer. Regardless, these results serve as a proof-of-concept that NIR photons can be harnessed via an S 0 to T 1 * sensitizer excited, integrated TTA-UC solar cell and that further improvements can readily be made by remedying the performance limiting processes noted above.  more » « less
Award ID(s):
1752782 1919633
NSF-PAR ID:
10325417
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
10
Issue:
12
ISSN:
2050-7526
Page Range / eLocation ID:
4947 to 4954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Triplet–triplet annihilation‐based photon upconversion (TTA‐UC) can efficiently generate higher energy photons at low relative fluences. Bulk metal halide perovskites have offered promise in efficiently sensitizing molecular triplet states in the solid state, necessary for the integration of TTA‐UC into device‐based applications. Recent work focused on TTA‐UC from a rubrene triplet annihilator sensitized by perovskite thin films has established relatively efficient charge extraction from the perovskite, forming the triplet exciton in rubrene. Yet, the specifics underpinning charge transfer at the perovskite/rubrene interface are not fully elucidated. To improve device performance and study the properties governing charge transfer at the interface, various organic solvents are explored to treat the perovskite surface. Scanning tunneling microscopy and spectroscopy show a difference in the electronic band structure, where both n‐ and p‐type terminated perovskite surfaces are observed depending on the solvent used. Supported by optical spectroscopy, the impact of the perovskite electronic structure is monitored, indicating that n‐type perovskite sensitizers feature higher TTA‐UC efficiencies due to favorable band bending resulting in efficient hole‐mediated triplet formation. Overall, the tuning of the electronic structure of the perovskite sensitizer through solvent treatment is shown to be a key force in tuning the mechanism of efficient triplet generation.

     
    more » « less
  2. null (Ed.)
    The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet–triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn–Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T 0 ), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission. 
    more » « less
  3. Abstract

    High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle‐reinforced composite networks since deep light penetration of short‐wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet–triplet annihilation upconversion (TTA‐UC) is employed for curing opaque hydrogel composites created by direct‐ink‐write (DIW) 3D printing. TTA‐UC converts low energy red light (λmax = 660 nm) for deep penetration into higher‐energy blue light to initiate free radical polymerizations within opaque objects. As proof‐of‐principle, hydrogels containing up to 15 wt.% TiO2filler particles and doped with TTA‐UC chromophores are readily cured with red light, while composites without the chromophores and TiO2loadings as little as 1–2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D‐printed composite polymer networks.

     
    more » « less
  4. The current investigation demonstrates highly efficient photochemical upconversion (UC) where a long-lived Zr( iv ) ligand-to-metal charge transfer (LMCT) complex serves as a triplet photosensitizer in concert with well-established 9,10-diphenylanthracene (DPA) along with newly conceived DPA–carbazole based acceptors/annihilators in THF solutions. The initial dynamic triplet–triplet energy transfer (TTET) processes (Δ G ∼ −0.19 eV) featured very large Stern–Volmer quenching constants ( K SV ) approaching or achieving 10 5 M −1 with bimolecular rate constants between 2 and 3 × 10 8 M −1 s −1 as ascertained using static and transient spectroscopic techniques. Both the TTET and subsequent triplet–triplet annihilation (TTA) processes were verified and throughly investigated using transient absorption spectroscopy. The Stern–Volmer metrics support 95% quenching of the Zr( iv ) photosensitizer using modest concentrations (0.25 mM) of the various acceptor/annihilators, where no aggregation took place between any of the chromophores in THF. Each of the upconverting formulations operated with continuous-wave linear incident power dependence ( λ ex = 514.5 nm) down to ultralow excitation power densities under optimized experimental conditions. Impressive record-setting η UC values ranging from 31.7% to 42.7% were achieved under excitation conditions (13 mW cm −2 ) below that of solar flux integrated across the Zr( iv ) photosensitizer's absorption band (26.7 mW cm −2 ). This study illustrates the importance of supporting the continued development and discovery of molecular-based triplet photosensitizers based on earth-abundant metals. 
    more » « less
  5. The development of efficient solid-state photon upconversion (UC) devices remains paramount for practical applications of the technology. In recent years, the incorporation of perovskite thin films as triplet sensitizers for triplet–triplet annihilation (TTA)-based UC has provided a promising solution. In the pursuit of finding an “ideal annihilator” to maximize the apparent anti-Stokes shift, we investigate naphtho[2,3-a]pyrene (NaPy) as an annihilator in both solution-based and perovskite-sensitized TTA-UC systems. Surprisingly, we observe different emission behaviors of NaPy in the solid state based on the excitation wavelength. Under direct excitation, a high-energy transition S1' dominates the emission spectrum, while UC results in increased emission from a lower lying state S1''. We propose that this is the result of aggregation-related lowering of the singlet excited state thus changing the fundamental energetic landscape underlying TTA. Aggregation decreases the singlet energy below the energy level of the triplet pair state 1(TT), yielding energetically favorable emission from the aggregated singlet state S1'' and weak emission from the higher lying singlet state S1' through thermally or entropically driven TTA-UC. 
    more » « less