skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oceanic Crustal Fluid Single Cell Genomics Complements Metagenomic and Metatranscriptomic Surveys With Orders of Magnitude Less Sample Volume
Fluids circulating through oceanic crust play important roles in global biogeochemical cycling mediated by their microbial inhabitants, but studying these sites is challenged by sampling logistics and low biomass. Borehole observatories installed at the North Pond study site on the western flank of the Mid-Atlantic Ridge have enabled investigation of the microbial biosphere in cold, oxygenated basaltic oceanic crust. Here we test a methodology that applies redox-sensitive fluorescent molecules for flow cytometric sorting of cells for single cell genomic sequencing from small volumes of low biomass (approximately 10 3 cells ml –1 ) crustal fluid. We compare the resulting genomic data to a recently published paired metagenomic and metatranscriptomic analysis from the same site. Even with low coverage genome sequencing, sorting cells from less than one milliliter of crustal fluid results in similar interpretation of dominant taxa and functional profiles as compared to ‘omics analysis that typically filter orders of magnitude more fluid volume. The diverse community dominated by Gammaproteobacteria, Bacteroidetes, Desulfobacterota, Alphaproteobacteria, and Zetaproteobacteria, had evidence of autotrophy and heterotrophy, a variety of nitrogen and sulfur cycling metabolisms, and motility. Together, results indicate fluorescence activated cell sorting methodology is a powerful addition to the toolbox for the study of low biomass systems or at sites where only small sample volumes are available for analysis.  more » « less
Award ID(s):
1826734
PAR ID:
10325470
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
12
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The oceanic crustal aquifer is one of the largest habitable volumes on Earth, and it harbors a reservoir of microbial life that influences global-scale biogeochemical cycles. Here, we use time series metagenomic and metatranscriptomic data from a low-temperature, ridge flank environment representative of the majority of global hydrothermal fluid circulation in the ocean to reconstruct microbial metabolic potential, transcript abundance, and community dynamics. We also present metagenome-assembled genomes from recently collected fluids that are furthest removed from drilling disturbances. Our results suggest that the microbial community in the North Pond aquifer plays an important role in the oxidation of organic carbon within the crust. This community is motile and metabolically flexible, with the ability to use both autotrophic and organotrophic pathways, as well as function under low oxygen conditions by using alternative electron acceptors such as nitrate and thiosulfate. Anaerobic processes are most abundant in subseafloor horizons deepest in the aquifer, furthest from connectivity with the deep ocean, and there was little overlap in the active microbial populations between sampling horizons. This work highlights the heterogeneity of microbial life in the subseafloor aquifer and provides new insights into biogeochemical cycling in ocean crust. 
    more » « less
  2. Large volumes of fluid flow through aged oceanic crust. Given the scale of this water flux, the exchange of organic and inorganic carbon that it mediates between the crust and deep ocean can be significant. However, off-axis carbon fluxes in older oceanic crust are still poorly constrained because access to low-temperature fluids from this environment is limited. At North Pond, a sedimented depression located on 8-million-year-old crust on the flank of the Mid-Atlantic Ridge, circulating crustal fluids are accessible through drilled borehole observatories. Here, fluids are cool (≤ 20°C), oxygenated and bear strong geochemical similarities to bottom seawater. In this study, we report concentrations and isotopic composition of dissolved organic and inorganic carbon from crustal fluids that were sampled six years after the installation of borehole observatories, which better represent the fluid geochemistry prior to drilling and perturbation. Radiocarbon-based signatures within carbon reservoirs support divergent shallow and deep fluid pathways within the crust. We also report a net loss of both dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) from the fluid during isolation in the crust. The removal of DOC is isotopically selective and consistent with microbe-mediated DOC oxidation. The loss of DIC is consistent with carbonate precipitation, although geochemical signatures of DIC addition to the fluids from DOC oxidation and basalt weathering are also evident. Extrapolated to global fluxes, systems like North Pond could be responsible for a net loss of ~10^11 mol C/yr of DIC and ~10^11 mol C/yr of DOC during the circulation of fluids through oceanic crust at low temperatures. 
    more » « less
  3. Abstract Here, we introduce intracellular genomic amplification (INgen), a method that harnesses the cell membrane as a natural reaction chamber for DNA amplification, enabling downstream sequencing and cell sorting. Unlike traditional single-cell techniques, INgen utilizes a strand-displacing, isothermal polymerase to amplify DNAwithinfixed, permeabilized cells while maintaining the cell’s structural integrity. This approach overcomes challenges associated with both typical single-cell DNA sequencing and hindrances encountered when previously attempting to sequence genetic material from fixed microbial cells, allowing amplification of genomic regions up to 100 kb and sequencing of whole genomes from diverse cell types, includingS. cerevisiae, B. subtilis, andE. coli. Additionally, INgen can be adapted for targeted DNA enrichment using biotinylated primers and for fluorescence-based cell sorting. 
    more » « less
  4. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 385T will revisit two Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) legacy sites—Holes 504B and 896A on the Costa Rica Rift flank—to advance lithostratigraphic, hydrogeological, and deep biosphere studies of upper oceanic crust. Hole 504B has served as a standard reference site for upper oceanic crust for decades despite low core recovery during drilling operations. Hole 896A serves as an analog site of crustal alteration for examining biogeography in the crustal deep biosphere. During Expedition 385T, we will advance lithostratigraphic records of in situ crustal architecture through Formation MicroScanner (FMS) logging, with priority for these operations in Hole 504B. The new logs from Hole 504B will reveal whether unrecovered intervals are highly fractured and/or brecciated and whether alteration style and intensity are correlated to volcanic architecture, which will allow for assessment of the hypothesis that hydrothermal alteration and mineralization style are spreading-rate dependent. We will also advance crustal hydrogeological and deep biosphere research through temperature logging and water sampling in both holes, with priority for these operations in Hole 896A. The new FMS-based lithostratigraphy coupled with new fluid assessment will also allow for improvements on the thermal limits of microbial life and seawater-basalt reactions. These operations in Holes 504B and 896A have direct relevance to Challenges 5, 6, 9, 10, 13, and 14 of the IODP 2013–2023 Science Plan. To achieve these data and sample recoveries from these legacy sites, existing wireline observatories installed in both holes will be removed and the remaining cased holes will be left open for possible future installation of next-generation observatories. The expedition will be implemented as an abbreviated (10 operational days) expedition with no new coring. 
    more » « less
  5. Abstract After decades studying the microbial “deep biosphere” in subseafloor oceanic crust, the growth and life strategies in this anoxic, low energy habitat remain poorly described. Using both single cell genomics and metagenomics, we reveal the life strategies of two distinct lineages of uncultivated Aminicenantia bacteria from the basaltic subseafloor oceanic crust of the eastern flank of the Juan de Fuca Ridge. Both lineages appear adapted to scavenge organic carbon, as each have genetic potential to catabolize amino acids and fatty acids, aligning with previous Aminicenantia reports. Given the organic carbon limitation in this habitat, seawater recharge and necromass may be important carbon sources for heterotrophic microorganisms inhabiting the ocean crust. Both lineages generate ATP via several mechanisms including substrate-level phosphorylation, anaerobic respiration, and electron bifurcation driving an Rnf ion translocation membrane complex. Genomic comparisons suggest these Aminicenantia transfer electrons extracellularly, perhaps to iron or sulfur oxides consistent with mineralogy of this site. One lineage, called JdFR-78, has small genomes that are basal to the Aminicenantia class and potentially use “primordial” siroheme biosynthetic intermediates for heme synthesis, suggesting this lineage retain characteristics of early evolved life. Lineage JdFR-78 contains CRISPR-Cas defenses to evade viruses, while other lineages contain prophage that may help prevent super-infection or no detectable viral defenses. Overall, genomic evidence points to Aminicenantia being well adapted to oceanic crust environments by taking advantage of simple organic molecules and extracellular electron transport. 
    more » « less