skip to main content


Title: Perspective—Multinary Oxide Semiconductors for Solar Fuels Generation: Closing the Performance Gap between Theory and Practice
This Perspective addresses the current state-of-the-art with the development of multinary oxides—a family of compounds that has long interested Prof. John B. Goodenough. Specifically, here we focus on their use as photoelectrodes for solar fuels generation. Using optical data and assuming an idealized 100% incident photon-to-electron conversion efficiency, it is possible to project the maximum short circuit photocurrent efficiency to be expected for a given oxide semiconductor. The performance gap between this theoretical value and that realized experimentally, is shown to be sizable for all but a couple of candidates. The technical issues underlying this gap and strategies for closing it are presented below.  more » « less
Award ID(s):
2004455
NSF-PAR ID:
10325537
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ECS Journal of Solid State Science and Technology
Volume:
11
Issue:
5
ISSN:
2162-8769
Page Range / eLocation ID:
053001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Monolayer MoS 2 has long been considered as the most promising candidate for wearable photovoltaic devices. However, its photovoltaic efficiency is restricted by its large band gap (2.0 eV). Though the band gap can be reduced by increasing the number of layers, the indirect band gap nature of the resulting multilayer MoS 2 is unfavorable. Herein, we report a theoretical discovery of the hitherto unknown symmetry-broken phase (denoted as 1T d ) of monolayer MoS 2 through a swarm structure search. The 1T d phase has a distorted octahedral coordinated pattern of Mo, and its direct band gap of 1.27 eV approaches the optimal value of 1.34 eV that gives the Shockley–Queisser limit for photovoltaic efficiency. Importantly, the direct band gap nature persists in thin films with multilayers owing to extremely weak vdW forces between adjacent 1T d layers. The theoretical photovoltaic efficiency at 30 nm thickness reaches ∼33.3%, which is the highest conversion efficiency among all the thin-film solar cell absorbers known thus far. Furthermore, several feasible strategies including appropriate electron injection and annealing methods were proposed to synthesize the 1T d phase. Once synthesized, the superior photovoltaic properties of the 1T d phase may lead to the development of an entirely new line of research for transition metal dichalcogenide solar cells. 
    more » « less
  2. null (Ed.)
    A spark plug calorimeter is introduced for quantifying the thermal energy delivered to unreactive gas surrounding the spark gap during spark ignition. Unlike other calorimeters, which measure the small pressure rise of the gas above the relatively high gauge pressure or relative to an internal reference, the present calorimeter measured the differential rise in pressure relative to the initial pressure in the calorimeter chamber. By using a large portion of the dynamic range of the chip-based pressure sensor, a high signal to noise ratio is possible; this can be advantageous, particularly for high initial pressures. Using this calorimeter, a parametric study was carried out, measuring the thermal energy deposition in the gas and the electrical-to-thermal energy conversion efficiency over a larger range of initial pressures than has been carried out previously (1–24 bar absolute at 298 K). The spark plug and inductive ignition circuit used gave arc-type rather than glow-type discharges. A standard resistor-type automotive spark plug was tested. The effects of spark gap distance (0.3–1.5 mm) and ignition dwell time (2–6 ms) were studied for an inductive-type ignition system. It was found that energy deposition to the gas (nitrogen) and the electrical-to-thermal energy conversion efficiency increased strongly with increasing gas pressure and spark gap distance. For the same ignition hardware and operating conditions, the thermal energy delivered to the gap varied from less than 1 mJ at 1 atm pressure and a gap distance of 0.3 mm to over 25 mJ at a pressure of 24 bar and a gap distance of 1.5 mm. For gas densities that might be representative of those in an engine at the time of ignition, the electrical-to-thermal energy conversion efficiencies ranged from approximately 3% at low pressures (4 bar) and small gap (0.3 mm) to as much as 40% at the highest pressure of 24 bar and with a gap of 1.5 mm. 
    more » « less
  3. Abstract

    Metasurfaces are two-dimensional nanoantenna arrays that can control the propagation of light at will. In particular, plasmonic metasurfaces feature ultrathin thicknesses, ease of fabrication, field confinement beyond the diffraction limit, superior nonlinear properties, and ultrafast performances. However, the technological relevance of plasmonic metasurfaces operating in the transmission mode at optical frequencies is questionable due to their limited efficiency. The state-of-the-art efficiency of geometric plasmonic metasurfaces at visible and near-infrared frequencies, for example, is ≤10%. Here, we report a multipole-interference-based transmission-type geometric plasmonic metasurface with a polarization conversion efficiency that reaches 42.3% at 744 nm, over 400% increase over the state of the art. The efficiency is augmented by breaking the scattering symmetry due to simultaneously approaching the generalized Kerker condition for two orthogonal polarizations. In addition, the design of the metasurface proposed in this study introduces an air gap between the antennas and the surrounding media that confines the field within the gap, which mitigates the crosstalk between meta-atoms and minimizes metallic absorption. The proposed metasurface is broadband, versatile, easy to fabricate, and highly tolerant to fabrication errors. We highlight the technological relevance of our plasmonic metasurface by demonstrating a transmission-type beam deflector and hologram with record efficiencies.

     
    more » « less
  4. From insects to arachnids to bacteria, the surfaces of lakes and ponds are teaming with life. Many modes of locomotion are employed by these organisms to navigate along the air–water interface, including the use of lipid-laden excretions that can locally change the surface tension of the water and induce a Marangoni flow. In this paper, we improved the speed and maneuverability of a miniature remote-controlled robot that mimics insect locomotion using an onboard tank of isopropyl alcohol and a series of servomotors to control both the rate and location of alcohol release to both propel and steer the robot across the water. Here, we studied the effect of a series of design changes to the foam rubber footpads, which float the robot and are integral in efficiently converting the alcohol-induced surface tension gradients into propulsive forces and effective maneuvering. Two designs were studied: a two-footpad design and a single-footpad design. In the case of two footpads, the gap between the two footpads was varied to investigate its impact on straight-line speed, propulsion efficiency, and maneuverability. An optimal design was found with a small but finite gap between the two pads of 7.5 mm. In the second design, a single footpad without a central gap was studied. This footpad had a rectangular cut-out in the rear to capture the alcohol. Footpads with wider and shallower cut-outs were found to optimize efficiency. This observation was reinforced by the predictions of a simple theoretical mechanical model. Overall, the optimized single-footpad robot outperformed the two-footpad robot, producing a 30% improvement in speed and a 400% improvement in maneuverability.

     
    more » « less
  5. A reduced-order model of face mask aerodynamics and aerosol filtration is introduced. This model incorporates existing empirical data on filtration efficiency for different types of face masks, as well as the size distribution of exhaled aerosol particles. By considering realistic peripheral gap profiles, our model estimates both the extent of peripheral leakage and the fitted filtration efficiency of face masks in terms of outward protection. Simulations employing realistic peripheral gap profiles reveal that, for surgical masks, 80% or more of the total exhaled airflow could leak through the mask periphery, even when the average peripheral gap measures only 0.65 mm. However, the majority of exhaled aerosol particles do not follow the flow path through the peripheral gaps but, instead, impact directly on the mask fabric. As a result, these face masks can filter out approximately 70% of the exhaled particles despite the significant peripheral leakage. To validate our model, we compare its predictions with experimental data, and we find a reasonable agreement in estimating the outward protection provided by surgical masks. This validation underscores the reliability of our model in assessing the efficacy of surgical masks. Moreover, leveraging the insights gained from our model, we explore the impact of mask usage on the transmission of respiratory viruses within communities. By considering various scenarios, we can assess the potential reduction in viral spread achieved through widespread mask adoption.

     
    more » « less