skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Histone lysine methacrylation is a dynamic post-translational modification regulated by HAT1 and SIRT2
Abstract Histone lysine crotonylation is a posttranslational modification with demonstrated functions in transcriptional regulation. Here we report the discovery of a new type of histone posttranslational modification, lysine methacrylation (Kmea), corresponding to a structural isomer of crotonyllysine. We validate the identity of this modification using diverse chemical approaches and further confirm the occurrence of this type of histone mark by pan specific and site-specific anti-methacryllysine antibodies. In total, we identify 27 Kmea modified histone sites in HeLa cells using affinity enrichment with a pan Kmea antibody and mass spectrometry. Subsequent biochemical studies show that histone Kmea is a dynamic mark, which is controlled by HAT1 as a methacryltransferase and SIRT2 as a de-methacrylase. Altogether, these investigations uncover a new type of enzyme-catalyzed histone modification and suggest that methacrylyl-CoA generating metabolism is part of a growing number of epigenome-associated metabolic pathways.  more » « less
Award ID(s):
1808087
PAR ID:
10325749
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Cell Discovery
Volume:
7
Issue:
1
ISSN:
2056-5968
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Short-chain acylations of lysine residues in eukaryotic proteins are recognized as essential posttranslational chemical modifications (PTMs) that regulate cellular processes from transcription, cell cycle, metabolism, to signal transduction. Lysine butyrylation was initially discovered as a normal straight chain butyrylation (Knbu). Here we report its structural isomer, branched chain butyrylation, i.e. lysine isobutyrylation (Kibu), existing as a new PTM on nuclear histones. Uniquely, isobutyryl-CoA is derived from valine catabolism and branched chain fatty acid oxidation which is distinct from the metabolism of n-butyryl-CoA. Several histone acetyltransferases were found to possess lysine isobutyryltransferase activity in vitro, especially p300 and HAT1. Transfection and western blot experiments showed that p300 regulated histone isobutyrylation levels in the cell. We resolved the X-ray crystal structures of HAT1 in complex with isobutyryl-CoA that gleaned an atomic level insight into HAT-catalyzed isobutyrylation. RNA-Seq profiling revealed that isobutyrate greatly affected the expression of genes associated with many pivotal biological pathways. Together, our findings identify Kibu as a novel chemical modification mark in histones and suggest its extensive role in regulating epigenetics and cellular physiology. 
    more » « less
  2. Shotgun proteomics has been widely used to identify histone marks. Conventional database search methods rely on the “target-decoy” strategy to calculate the false discovery rate (FDR) and distinguish true peptide-spectrum matches (PSMs) from false ones. This strategy has a caveat of inaccurate FDR caused by the small data size of histone marks. To address this challenge, we developed a tailored database search strategy, named “Comprehensive Histone Mark Analysis (CHiMA).” Instead of target-decoy–based FDR, this method uses “50% matched fragment ions” as the key criterion to identify high-confidence PSMs. CHiMA identified twice as many histone modification sites as the conventional method in benchmark datasets. Reanalysis of our previous proteomics data using CHiMA led to the identification of 113 new histone marks for four types of lysine acylations, almost doubling the number of previously reported marks. This tool not only offers a valuable approach for identifying histone modifications but also greatly expands the repertoire of histone marks. 
    more » « less
  3. Abstract Protein posttranslational modification (PTM) is a biochemical mechanism benefitting cellular adaptation to dynamic intracellular and environmental conditions. Recently, several acylation marks have been identified as new protein PTMs occurring on specific lysine residues in mammalian cells: isobutyrylation, methacrylation, benzoylation, isonicotinylation, and lactylation. These acylation marks were initially discovered to occur on nucleosomal histones, but they potentially occur as prevalent biomarkers on non‐histone proteins as well. The existence of these PTMs is a downstream consequence of metabolism and demonstrates the intimate crosstalk between active cellular metabolites and regulation of protein function. Emerging evidence indicates that these acylation marks on histones affect DNA transcription and are functionally distinct from the well‐studied lysine acetylation. Herein, we discuss enzymatic regulation and metabolic etiology of these acylations, 'reader' proteins that recognize different acylations, and their possible physiological and pathological functions. Several of these modifications correlate with other well‐studied acylations and fine‐tune the regulation of gene expression. Overall, findings of these acylation marks reveal new molecular links between metabolism and epigenetics and open up many questions for future investigation. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. 
    more » « less
  4. Margueron R; Holoch D (Ed.)
    Dynamic posttranslational modifications to canonical histones that constitute the nucleosome (H2A, H2B, H3, and H4) control all aspects of enzymatic transactions with DNA. Histone methylation has been studied heavily for the past 20 years, and our mechanistic understanding of the control and function of individual methylation events on specific histone arginine and lysine residues has been greatly improved over the past decade, driven by excellent new tools and methods. Here, we will summarize what is known about the distribution and some of the functions of protein methyltransferases from all major eukaryotic supergroups. The main conclusion is that protein, and specifically histone, methylation is an ancient process. Many taxa in all supergroups have lost some subfamilies of both protein arginine methyltransferases (PRMT) and the heavily studied SET domain lysine methyltransferases (KMT). Over time, novel subfamilies, especially of SET domain proteins, arose. We use the interactions between H3K27 and H3K36 methylation as one example for the complex circuitry of histone modifications that make up the “histone code,” and we discuss one recent example (Paramecium Ezl1) for how extant enzymes that may resemble more ancient SET domain KMTs are able to modify two lysine residues that have divergent functions in plants, fungi, and animals. Complexity of SET domain KMT function in the well-studied plant and animal lineages arose not only by gene duplication but also acquisition of novel DNA- and histone-binding domains in certain subfamilies. 
    more » « less
  5. The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure−function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent posttranslational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes. 
    more » « less