skip to main content


Title: Boolean and Elementary Algebra with a Roll‐To‐Roll Printed Electrochemical Memristor
Abstract

A non‐volatile conjugated polymer‐based electrochemical memristor (cPECM), derived from sodium 4‐[(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐2‐yl)methoxy]butane‐2‐sulfonate (S‐EDOT), is fabricated through roll‐to‐roll printing and exhibited neuromorphic properties. The 3‐terminal device employed a “read” channel where conductivity of the water‐soluble, self‐doped S‐PEDOT is equated to synaptic weight and was electrically decoupled from the programming electrode. For the model system, a +2500 mV programming pulse of 100 ms duration resulted in a 0.136 μS resolution in conductivity change, giving over 1000 distinct conductivity states for one cycle. The minimum programming power requirements of the cPECM was 0.31 pJ mm−2and with advanced printing techniques, a 0.1 fJ requirement for a 20 μm device is achievable. The mathematical operations of addition, subtraction, multiplication, and division are demonstrated with a single cPECM, as well as the logic gates AND, OR, NAND, and NOR. This demonstration of a printed cPECM is the first step toward the implementation of a mass produced electrochemical memristor that combines information storage and processing and may allow for the realization of printable artificial neural networks.

 
more » « less
Award ID(s):
1655740 1632881
NSF-PAR ID:
10370448
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
7
Issue:
5
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrochemical‐based memristors are highly attractive that are capable of nonvolatile analog tuning, long‐term state stability, low power consumption, device scalability, and fast switching speeds. Through the combination of film deposition techniques, i.e., vapor phase polymerization and screen printing, fabrication of a poly(4‐(6‐hexyl)‐4H‐dithieno[3,2‐b:2′,3′‐d]pyrrole) (p6DTP)‐based synaptic‐emulating three‐terminal memristor is designed. Through voltage‐driven pulse programming, and square waves with an amplitude of 100 mV and duration of 100 msec, the device exhibits a power consumption of 1 pJmm2per synaptic event. By analyzing the fundamental operational trends of the p6DTP‐based device, simple and advanced integrated applications can be demonstrated along with synaptic‐like responses. This effort is the first presentation of the vapor phase polymerization technique for any dithienopyrrole‐based monomers, along with the physical implementation of any memristive system as an advanced logical circuit, demonstrated here as a cascaded combinational logic gate.

     
    more » « less
  2. Abstract

    A roll‐to‐roll (R2R) transfer technique is employed to improve the electrical properties of transferred graphene on flexible substrates using parylene as an interfacial layer. A layer of parylene is deposited on graphene/copper (Cu) foils grown by chemical vapor deposition and are laminated onto ethylene vinyl acetate (EVA)/poly(ethylene terephthalate). Then, the samples are delaminated from the Cu using an electrochemical transfer process, resulting in flexible and conductive substrates with sheet resistances of below 300 Ω sq−1, which is significantly better (fourfold) than the sample transferred by R2R without parylene (1200 Ω sq−1). The characterization results indicate that parylene C and D dope graphene due to the presence of chlorine atoms in their structure, resulting in higher carrier density and thus lower sheet resistance. Density functional theory calculations reveal that the binding energy between parylene and graphene is stronger than that of EVA and graphene, which may lead to less tear in graphene during the R2R transfer. Finally, organic solar cells are fabricated on the ultrathin and flexible parylene/graphene substrates and an ultra‐lightweight device is achieved with a power conversion efficiency of 5.86%. Additionally, the device shows a high power per weight of 6.46 W g−1with superior air stability.

     
    more » « less
  3. Abstract

    Electrode architectures significantly influence the electrochemical performance, flexibility, and applications of lithium‐ion batteries (LiBs). However, the conventional bar coating for fabricating electrodes limits the addition of customized architecture or patterns. In this study, as a novel approach, patterns are integrated into electrodes through large‐scale roll‐to‐roll (R2R) flexographic printing. Additionally, flexible, recyclable, and biodegradable paper are innovatively used as a printing substrate during printing LiBs manufacturing, which exhibited superior printability. Moreover, the paper is modified with a thin‐layer Al2O3to function as the separator in the printed LiB. The Al2O3‐coated paper enables an admirable wettability for printing, excellent mechanical properties for high‐speed R2R manufacturing, and outstanding thermal stability for the safe and stable operation of LiBs. The assembled paper cells exhibit nearly 100% discharge capacity retention after 1000 cycles at 3 C and outstanding rate performance. This work inspires future large‐scale microbatteries manufacturing integrated with high‐resolution architecture designs.

     
    more » « less
  4. Abstract

    Two bipolar host materials3‐CBPyand4‐mCBPyare reported. These hosts are structural analogs of the common host materials CBP and mCBP wherein the phenyl rings have been replaced with pyridines. The two materials possess deep highest occupied molecular orbital (HOMO) and shallow lowest unoccupied molecular orbital (LUMO) levels along with sufficiently high energyS1andT1states that make them suitable hosts for yellow emitters in electroluminescent devices. Yellow‐emitting thermally activated delayed fluorescence organic light‐emitting diodes are fabricated using 2,4,6‐tris (4‐(10H‐phenoxazin‐10‐yl)phenyl)‐1,3,5‐triazine (tri‐PXZ‐TRZ) as the dopant emitter with either3‐CBPyor4‐mCBPyemployed as the host. Their device performance is compared to analogous devices using CBP and mCBP as host materials. The pyridine‐containing host devices show markedly improved external quantum efficiencies (EQE) and decreased roll‐off. The 7 wt% tri‐PXZ‐TRZ‐doped device exhibits very low turn‐on voltage (2.5 V for both3‐CBPyand4‐mCBPy) along with maximum external quantum efficiencies (EQEmax) reaching 15.6% (for3‐CBPy) and 19.4% (for4‐mCBPy). The device using4‐mCBPyalso exhibits very low efficiency roll‐off with an EQE of 16.0% at a luminance of 10 000 cd m−2.

     
    more » « less
  5. Abstract

    Roll-to-Roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based products, as opposed to sheet-to-sheet (S2S) approach suited for low-volume work. However, meeting the tight alignment tolerance requirements of additive multi-layer printed electronics specified by device resolution that is usually at micrometer scale has become a major challenge in R2R flexible electronics printing, preventing the fabrication technology from being transferred from conventional S2S to high-speed R2R production. Print registration in a R2R process is to align successive print patterns on the flexible substrate and to ensure quality printed devices through effective control of various process variables. Conventional model-based control methods require an accurate web-handling dynamic model and real-time tension measurements to ensure control laws can be faithfully derived. For complex multistage R2R systems, physics-based state-space models are difficult to derive, and real-time tension measurements are not always acquirable. In this paper, we present a novel data-driven model predictive control (DD-MPC) method to minimize the multistage register errors effectively. We show that the DD-MPC can handle multi-input and multi-output systems and obtain the plant model from sensor data via an Eigensystem Realization Algorithm (ERA) and Observer Kalman filter identification (OKID) system identification method. In addition, the proposed control scheme works for systems with partially measurable system states.

     
    more » « less