skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-invasive quantification of the mitochondrial redox state in livers during machine perfusion
Ischemia reperfusion injury (IRI) is a critical problem in liver transplantation that can lead to life-threatening complications and substantially limit the utilization of livers for transplantation. However, because there are no early diagnostics available, fulminant injury may only become evident post-transplant. Mitochondria play a central role in IRI and are an ideal diagnostic target. During ischemia, changes in the mitochondrial redox state form the first link in the chain of events that lead to IRI. In this study we used resonance Raman spectroscopy to provide a rapid, non-invasive, and label-free diagnostic for quantification of the hepatic mitochondrial redox status. We show this diagnostic can be used to significantly distinguish transplantable versus non-transplantable ischemically injured rat livers during oxygenated machine perfusion and demonstrate spatial differences in the response of mitochondrial redox to ischemia reperfusion. This novel diagnostic may be used in the future to predict the viability of human livers for transplantation and as a tool to better understand the mechanisms of hepatic IRI.  more » « less
Award ID(s):
1941543
PAR ID:
10325928
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Mukhopadhyay, Partha
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
10
ISSN:
1932-6203
Page Range / eLocation ID:
e0258833
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Organ transplantation is a life-saving procedure affecting over 100,000 people on the transplant waitlist. Ischemia reperfusion injury (IRI) is a major challenge in the field as it can cause post-transplantation complications and limit the use of organs from extended criteria donors. Machine perfusion technology has the potential to mitigate IRI; however, it currently fails to achieve its full potential due to a lack of highly sensitive and specific assays to assess organ quality during perfusion. We developed a real-time and non-invasive method of assessing organs during perfusion based on mitochondrial function and injury using resonance Raman spectroscopy. It uses a 441 nm laser and a high-resolution spectrometer to quantify the oxidation state of mitochondrial cytochromes during perfusion. This index of mitochondrial oxidation, or 3RMR, was used to understand differences in mitochondrial recovery of cold ischemic rodent livers during machine perfusion at normothermic temperatures with an acellular versus cellular perfusate. Measurement of the mitochondrial oxidation revealed that there was no difference in 3RMR of fresh livers as a function of normothermic perfusion when comparing acellular versus cellular-based perfusates. However, following 24 h of static cold storage, 3RMR returned to baseline faster with a cellular-based perfusate, yet 3RMR progressively increased during perfusion, indicating injury may develop over time. Thus, this study emphasizes the need for further refinement of a reoxygenation strategy during normothermic machine perfusion that considers cold ischemia durations, gradual recovery/rewarming, and risk of hemolysis. 
    more » « less
  2. Abstract— During liver transplantation, ischemia-reperfusion injury (IRI) is inevitable and decreases the overall success of the surgery. While guidelines exist, there is no reliable way to quantitatively assess the degree of IRI present in the liver. Our recent study has shown a correlation between the bile-to-plasma ratio of FDA-approved sodium fluorescein (SF) and the degree of hepatic IRI, presumably due to IRI-induced decrease in the activity of the hepatic multidrug resistance-associated protein 2 (MRP2); however, the contribution of SF blood clearance via the bile is still convoluted with other factors, such as renal clearance. In this work, we sought to computationally model SF blood clearance via the bile. First, we converted extant SF fluorescence data from rat whole blood, plasma, and bile to concentrations using calibration curves. Next, based on these SF concentration data, we generated a “liver-centric”, physiologically-based pharmacokinetic (PBPK) model of SF liver uptake and clearance via the bile. Model simulations show that SF bile concentration is highly sensitive to a change in the activity of hepatic MPR2. These simulations suggest that SF bile clearance along with the PBPK model can be used to quantify the effect of IRI on the activity of MRP2. Clinical Relevance— This study establishes the theory necessary to generate a model for predicting the degree of IRI during liver transplantation. 
    more » « less
  3. We demonstrate that ischemia-reperfusion injury occurs in all livers during NMP, though there are notable differences in gene expression between functional and nonfunctional livers. We further demonstrate that activation of the liver’s repair and homeostasis mechanisms through autophagy plays a vital role in the graft’s response to injury and may impact liver function. These findings indicate that liver autophagy might be a key therapeutic target for rehabilitating the function of severely injured or untransplantable livers. 
    more » « less
  4. Ischemia-reperfusion injury (IRI), which describes the cell damage and death that occurs after blood and oxygen are restored to ischemic or hypoxic tissue, is a significant factor within the mortality rates of heart disease and stroke patients. At the cellular level, the return of oxygen triggers an increase in reactive oxygen species (ROS) and mitochondrial calcium (mCa2+) overload, which both contribute to cell death. Despite the widespread occurrence of IRI in different pathological conditions, there are currently no clinically approved therapeutic agents for its management. In this Perspective, we will briefly discuss the current therapeutic options for IRI and then describe in great detail the potential role and arising applications of metal-containing coordination and organometallic complexes for treating this condition. This Perspective categorizes these metal compounds based on their mechanisms of action, which include their use as delivery agents for gasotransmitters, inhibitors of mCa2+ uptake, and catalysts for the decomposition of ROS. Lastly, the challenges and opportunities for inorganic chemistry approaches to manage IRI are discussed. 
    more » « less
  5. Abstract Ischemia-reperfusion injury (IRI) poses significant challenges across various organ systems, including the heart, brain, and kidneys. Exosomes have shown great potentials and applications in mitigating IRI-induced cell and tissue damage through modulating inflammatory responses, enhancing angiogenesis, and promoting tissue repair. Despite these advances, a more systematic understanding of exosomes from different sources and their biotransport is critical for optimizing therapeutic efficacy and accelerating the clinical adoption of exosomes for IRI therapies. Therefore, this review article overviews the administration routes of exosomes from different sources, such as mesenchymal stem cells and other somatic cells, in the context of IRI treatment. Furthermore, this article covers how the delivered exosomes modulate molecular pathways of recipient cells, aiding in the prevention of cell death and the promotions of regeneration in IRI models. In the end, this article discusses the ongoing research efforts and propose future research directions of exosome-based therapies. Graphical Abstract 
    more » « less