skip to main content


Title: The effect of blood cells retained in rat livers during static cold storage on viability outcomes during normothermic machine perfusion
Abstract In transplantation, livers are transported to recipients using static cold storage (SCS), whereby livers are exposed to cold ischemic injury that contribute to post-transplant risk factors. We hypothesized that flushing organs during procurement with cold preservation solutions could influence the number of donor blood cells retained in the allograft thereby exacerbating cold ischemic injury. We present the results of rat livers that underwent 24 h SCS after being flushed with a cold University of Wisconsin (UW) solution versus room temperature (RT) lactated ringers (LR) solution. These results were compared to livers that were not flushed prior to SCS and thoroughly flushed livers without SCS. We used viability and injury metrics collected during normothermic machine perfusion (NMP) and the number of retained peripheral cells (RPCs) measured by histology to compare outcomes. Compared to the cold UW flush group, livers flushed with RT LR had lower resistance, lactate, AST, and ALT at 6 h of NMP. The number of RPCs also had significant positive correlations with resistance, lactate, and potassium levels and a negative correlation with energy charge. In conclusion, livers exposed to cold UW flush prior to SCS appear to perform worse during NMP, compared to RT LR flush.  more » « less
Award ID(s):
1941543
NSF-PAR ID:
10325932
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Background For 50 years, static cold storage (SCS) has been the gold standard for solid organ preservation in transplantation. Although logistically convenient, this preservation method presents important constraints in terms of duration and cold ischemia-induced lesions. We aimed to develop a machine perfusion (MP) protocol for recovery of vascularized composite allografts (VCA) after static cold preservation and determine its effects in a rat limb transplantation model.

    Methods Partial hindlimbs were procured from Lewis rats and subjected to SCS in Histidine-Tryptophan-Ketoglutarate solution for 0, 12, 18, 24, and 48 hours. They were then either transplanted (Txp), subjected to subnormothermic machine perfusion (SNMP) for 3 hours with a modified Steen solution, or to SNMP + Txp. Perfusion parameters were assessed for blood gas and electrolytes measurement, and flow rate and arterial pressures were monitored continuously. Histology was assessed at the end of perfusion. For select SCS durations, graft survival and clinical outcomes after transplantation were compared between groups at 21 days.

    Results Transplantation of limbs preserved for 0, 12, 18, and 24-hour SCS resulted in similar survival rates at postoperative day 21. Grafts cold-stored for 48 hours presented delayed graft failure (p = 0.0032). SNMP of limbs after 12-hour SCS recovered the vascular resistance, potassium, and lactate levels to values similar to limbs that were not subjected to SCS. However, 18-hour SCS grafts developed significant edema during SNMP recovery. Transplantation of grafts that had undergone a mixed preservation method (12-hour SCS + SNMP + Txp) resulted in better clinical outcomes based on skin clinical scores at day 21 post-transplantation when compared to the SCS + Txp group (p = 0.01613).

    Conclusion To date, VCA MP is still limited to animal models and no protocols are yet developed for graft recovery. Our study suggests that ex vivo SNMP could help increase the preservation duration and limit cold ischemia-induced injury in VCA transplantation.

     
    more » « less
  2. Hypothermic (cold) preservation is a limiting factor for successful cell and tissue transplantation where cell swelling (edema) usually develops, impairing cell function. University of Wisconsin (UW) solution, a standard cold preservation solution, contains effective components to suppress hypothermia-induced cell swelling. Antifreeze proteins (AFPs) found in many cold-adapted organisms can prevent cold injury of the organisms. Here, the effects of a beetle AFP from Dendroides canadensis (DAFP-1) on pancreatic β-cells preservation were first investigated. As low as 500 µg/mL, DAFP-1 significantly minimized INS-1 cell swelling and subsequent cell death during 4 °C preservation in UW solution for up to three days. However, such significant cytoprotection was not observed by an AFP from Tenebrio molitor (TmAFP), a structural homologue to DAFP-1 but lacking arginine, at the same levels. The cytoprotective effect of DAFP-1 was further validated with the primary β-cells in the isolated rat pancreatic islets in UW solution. The submilligram level supplement of DAFP-1 to UW solution significantly increased the islet mass recovery after three days of cold preservation followed by rewarming. The protective effects of DAFP-1 in UW solution were discussed at a molecular level. The results indicate the potential of DAFP-1 to enhance cell survival during extended cold preservation. 
    more » « less
  3. Introduction:The current liver organ shortage has pushed the field of transplantation to develop new methods to prolong the preservation time of livers from the current clinical standard of static cold storage. Our approach, termed partial freezing, aims to induce a thermodynamically stable frozen state at high subzero storage temperatures (−10°C to −15°C), while simultaneously maintaining a sufficient unfrozen fraction to limit ice-mediated injury.

    Methods and results:Using glycerol as the main permeating cryoprotectant agent, this research first demonstrated that partially frozen rat livers showed similar outcomes after thawing from either −10°C or −15°C with respect to subnormothermic machine perfusion metrics. Next, we assessed the effect of adding ice modulators, including antifreeze glycoprotein (AFGP) or a polyvinyl alcohol/polyglycerol combination (X/Z-1000), on the viability and structural integrity of partially frozen rat livers compared to glycerol-only control livers. Results showed that AFGP livers had high levels of ATP and the least edema but suffered from significant endothelial cell damage. X/Z-1000 livers had the highest levels of ATP and energy charge (EC) but also demonstrated endothelial damage and post-thaw edema. Glycerol-only control livers exhibited the least DNA damage on Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining but also had the lowest levels of ATP and EC.

    Discussion:Further research is necessary to optimize the ideal ice modulator cocktail for our partial-freezing protocol. Modifications to cryoprotective agent (CPA) combinations, including testing additional ice modulators, can help improve the viability of these partially frozen organs.

     
    more » « less
  4. Diabetes is a major risk factor for cardiovascular diseases, especially cardiomyopathy, a condition in which the smooth muscles of the heart become thick and rigid, affecting the functioning of cardiomyocytes, the contractile cells of the heart. Uncontrolled elevated glucose levels over time can result in oxidative stress, which could lead to inflammation and altered epigenetic mechanisms. In the current study, we investigated whether hyperglycemia can modify cardiac function by directly affecting these changes in cardiomyocytes. To evaluate the adverse effect of high glucose, we measured the levels of gap junction protein, connexin 43, which is responsible for modulating cardiac electric activities and Troponin I, a part of the troponin complex in the heart muscles, commonly used as cardiac markers of ischemic heart disease. AC16 human cardiomyocyte cells were used in this study. Under hyperglycemic conditions, these cells demonstrated altered levels of connexin 43 and Troponin-I after 24 h of exposure. We also examined hyperglycemia induced changes in epigenetic markers: H3K9me1, Sirtuin-1 (SIRT1), and histone deacetylase (HDAC)-2 as well as in inflammatory and stress-related mediators, such as heat shock protein (HSP)-60, receptor for advanced glycation end products (RAGE), toll-like receptor (TLR)-4, high mobility group box (HMGB)-1 and CXC chemokine receptor (CXCR)-4. Cardiomyocytes exposed to 25mM glucose resulted in the downregulation of HSP60 and SIRT1 after 48 h. We further examined that hyperglycemia mediated the decrease in the gap junction protein CX43, as well as CXC chemokine receptor CXCR4 which may affect the physiological functions of the cardiomyocytes when exposed to high glucose for 24 and 48 h. Upregulated expression of DNA-binding nuclear protein HMGB1, along with changes in histone methylation marker H3K9me1 have demonstrated hyperglycemia-induced damage to cardiomyocyte at 24 h of exposure. Our study established that 24 to 48 h of hyperglycemic exposure could stimulate stress-mediated inflammatory mediators in cardiomyocytes in vitro. These stress-related changes in hyperglycemia-induced cardiomyocytes may further initiate an increase in injury markers which eventually could alter the epigenetic processes. Therefore, epigenetic and inflammatory mechanisms in conjunction with alterations in a downstream signaling pathway could have a direct effect on the functionality of the cardiomyocytes exposed to high glucose during short and long-term exposures. 
    more » « less
  5. Alan Dardik, MD (Ed.)
    Objective: Lifestyle choices such as tobacco and e-cigarette use are a risk factor for peripheral arterial disease (PAD) and may influence therapeutic outcomes. The effect of chronic nicotine exposure on the angiogenic capacity of human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) was assessed in a murine model of PAD. Methods: Mice were exposed to nicotine or phosphate-buffered saline (PBS) for 28 days, followed by induction of limb ischemia and iPSC-EC transplantation. Cells were injected into the ischemic limb immediately after induction of hindlimb ischemia and again 7 days later. Limb perfusion was assessed by laser Doppler spectroscopy, and transplant cell survival was monitored for 14 days afterward using bioluminescence imaging, followed by histological analysis of angiogenesis. Results: Transplant cell retention progressively decreased over time after implantation based on bioluminescence imaging, and there were no significant differences in cell survival between mice with chronic exposure to nicotine or PBS. However, compared with mice without nicotine exposure, mice with prior nicotine exposure had had an impaired therapeutic response to iPSC-EC therapy based on decreased vascular perfusion recovery. Mice with nicotine exposure, followed by cell transplantation, had significantly lower mean perfusion ratio after 14 days (0.47 ± 0.07) compared with mice undergoing cell transplantation without prior nicotine exposure (0.79 ± 0.11). This finding was further supported by histological analysis of capillary density, in which animals with prior nicotine exposure had a lower capillary density (45.9 ± 4.7 per mm2) compared with mice without nicotine exposure (66.5 ± 8.1 per mm2). Importantly, the ischemic limbs mice exposed to nicotine without cell therapy also showed significant impairment in perfusion recovery after 14 days, compared with mice that received PBS + iPSC-EC treatment. This result suggested that mice without chronic nicotine exposure could respond to iPSC-EC implantation into the ischemic limb by inducing perfusion recovery, whereas mice with chronic nicotine exposure did not respond to iPSC-EC therapy. Conclusions: Together, these findings show that chronic nicotine exposure adversely affects the ability of iPSC-EC therapy to promote vascular perfusion recovery and angiogenesis in a murine PAD model. 
    more » « less